Principles of High Resolution Solid State Nuclear

Principles: High power Ofi-resonance irradiation. Δ ν. 0 ν. 0. ±Δ .... 12. 14. MAS dimension (ppm). -4. -2. 0. 2. 4. 6. 8. 10. 1 H FSLG dimension (ppm). Alanine ...
4MB taille 14 téléchargements 574 vues
Principles of High Resolution Solid State Nuclear Magnetic Resonance Manipulating spins without restriction

Thibault Charpentier CEA / IRAMIS / SIS2M - UMR CEA-CNRS 3299 91191 Gif-sur-Yvette cedex, France

2`eme ´ecole de RMN du GERM 18th -23th , Carg`ese (Corse)

Homonuclear Decoupling

Recoupling

Notes

Homonuclear Decoupling

I

2013: Ultra-high spinning frequency (JEOL: 110 kHz, o.d. 0.75 mm)

Instead of sample spinning, rotate the nuclear spins !

Homonuclear Decoupling: Lee-Goldburg I.a Principles: High power Off-resonance irradiation

 HRF (t) = 2ω1 cos {(ω0 ± ∆)t} Ix

z

In the rotating frame:

0

0±  B 0 m

=

1

2

Ie



1 For derivation, see exercices

x

II II H = HD + ω1 Ix + ∆Iz = HD + ωe Ie II k, secular approximation for HII ωe > kHD D in a second rotating frame (ωe Ie ):   3 cos2 θm − 1 II II  e +H (t) He = HD,e D,e  2

Homonuclear Decoupling: Lee-Goldburg I.b Principles: High power Off-resonance irradiation

z B0 m

Ie

iso

HCS,e = ωiso cos θIe

x For derivation, see exercices

Spin precession around Ie results in a scaling of the chemical shift:

Homonuclear Decoupling: Lee-Goldburg I.c The full derivation . . . buckle up !

H = HII + ω1 Ix + ∆Iz = HII + ωe Ie Rotation around Iy , angle θ (Ie ⇒ Iz ). Let’s Wigner do the work ! 1 X ij † ij ωD Ry (θ)T20 Ry† (θ)HRy (θ) = Ry (θ) + ωe Iz 2 i6=j ! 1 X ij X ij 2 ωD T2n dn,0 (θ) + ωe Iz = 2 n i6=j

Rotating Frame (again and again ...) e −iωe Iz t ˜ H(t)

=

1 X ij ωD 2 i6=j

! X

ij 2 T2n dn,0 (θ)e −inωe Iz t

n

The secular (time independent) part  X ij  ij 2 2 ˜ = 1 H ωD T20 d0,0 (θ) = d0,0 (θ) × HII 2 i6=j

=0 with M.A. irr.

Homonuclear Decoupling: What this damned secular approx stands for ?!! II k. Secular approximation holds if ωe > kHD

 IID eI

eI

 IID Secular approx.

Secular approx.

Homonuclear Decoupling: Lee-Goldburg II The Time-reversal symmetry !

Frequency swichted LG

Phase Modulated LG (on-resonance) −X



−

=2 e =1/e =2 e =1/e =0 =0

=2 e =1/e =2 e =1/e z

2

−x error

Ie

 Ie

x

0 1 2 3  4 5 6  7 8 0 1 2 3  4 5 6 7 8

Phase

X

error

−z

0

Pulse Index

Faster phase than frequency switch Compensates for RF / offset mis-setting Symmetrisation cancels higher-order terms (Time reversal)

Homonuclear Decoupling: High Resolution NMR of proton 2D approach (High Resolution t1 × Poor Resolution t2 )

Windowed pulse sequence ( A = building block )

t2 90

A0°

*

A180°

*

A0°

*

A180°

A0°

* C

window

*

Homonuclear Decoupling: 1H NMR (L-Alanine) Alanine - B0=11.75T - vROT=12.5 kHz

H FSLG dimension (ppm)

-2

1

FSLG Resolution

-4

0 2 4 6 8 10

14

12

10

8

6

4 2 0 -2 MAS dimension (ppm)

MAS Resolution

-4

-6

-8

-10

Homonuclear Decoupling:

13

C NMR (Admantane)

Adamantane - B0=11.75T - vROT=15 kHz

H

H C

H

CW (5kHz)

H

1/2

H

J/3

H C H

H

FSLG 44

42

40

38

36 34 13 Chemical shift (ppm)

32

30

28

⇒ Weak couplings such as J can be recovered !! ⇒ J-base experiments can be performed with 1 H !

26

Homonuclear Decoupling: in silico design Numerical optimization using spin dynamics simulations. This approach has been pioneered with the DUMBO pulse sequence, digitized phase modulation φ(τ ) at constant RF amplitude, including a time-reversal symmetry (φ(1 − τ ) in the second half, τ = t/τm )

0≤τ ≤ φ(τ ) =

1 2

n=K X

continuous

{an cos(2πnτ )

n=0

+bn sin(2πnτ )}

C =m

N

Windowed (w)

m 1 2

≤τ ≤1

φ(τ ) = φ(1 − τ ) + π

* C

E. Salager et al., Chem. Phys. Lett. 469 (2009) 336-341

N

Homonuclear Decoupling Design: Direct spectral optimization → The moss reallistic spin-dynamics simulator is the spectrometer ! Optimization using the spectrometer output.

B. Elena, Chem. Phys. Lett. 398 (2004) 532-538

WAHUHA Discrete rotation around the magic angle

Ie

z y x

A first introduction to Average Hamiltonian Theory Introduction to the toggling frame. The AHT sandwich.

U  , 0



H

H   R  H R  



The bracketed spin evolution is equivalent to an evolution under the rotated spin Hamiltonian. U(t, 0) = Rφ† (θ) exp {−iHt} Rφ (θ) n o = exp −iRφ† (θ)HRφ (θ)t = exp {−iHφ (θ)t}

Note: At the end cycle, we have URF = R † R = 1. This is general property of recoupling/decoupling scheme.

WAHUHA: A introduction to Average Hamiltonian Theory  H

X

H

zz

 H

X

Y zz

zz

H

H=

H

zz

H

xx

2



zz

2

2

 H

zz

 H



yy

H

xx

Y

 H

X

H

X zz

 H

H

zz



 ij = ωD 3Izi Izj − Ixi Ixj − Iyi Iyj

Hxx

= Ry (90)Hzz Ry† (90)

Hxx

ij = ωD 3Ixi Ixj − Izi Izj − Iyi Iyj

Hyy

= Rx (90)Hzz Rx† (90)

Hyy

ij = ωD 3Iyi Iyj − Ixi Ixj − Izi Izj

zz





yy

H

zz

1 2 H xx 2 H yy 2 H zz  6 H



zz

 H

Hzz

Hxx + Hyy + Hzz = 0

Total Evolution is (to first order) H(6τ ) = Hzz τ + Hyy τ + 2Hxx τ + Hyy τ + Hzz τ = 0



WAHUHA: A introduction to Average Hamiltonian Theory 

X



Y

2

Y



X



Iz

Iz

Iz

Iz

Iz





2





Iz

Iz

Ix

Iz

Iz





2





Iz

Iy

Ix

Iy

Iz

X

I z=

6 1 I I I   3 x y z

X

Iz

=

1 (Ix + Iy + Iz ) 3

Magnetization precesses around Ie 1 Ie = √ (Ix + Iy + Iz ) 3 Chemical shift scales as: 1 HCS = √ ωiso Ie 3

Homonuclear Decoupling: Pulse sequences overview Numerous scheme have been developped for homonuclear decoupling (and can’t be reviewed here). Most popular are( a) I

Solid Echo based (90 pulses): WHH4, MREV8, BR24, BLEW12, DUMBO.

I

Magic Echo sandwich: TREV8, MSHOT3

I

Lee-Goldburg based: LG, FSLG, PMGLn, wPMGLn

I

Rotor-synchronized: CNνn , RNνn , SAM

Criteria I

Spinning Frequencies regime

I

RF field required

I

Electronics (switch)

S. Paul, P. K. Madhu, J. of the Indian Institute of Science 90 (2010)

Homonuclear Decoupling: High-resolution 3D The HCNA experiment

I 1H

PMLG: High Resolution 1 H t1

I 1 H-13 C

CP +

13

C t2

I 13 Cα -15 N

specific-CP: frequency selective (LG)-CP that selects Cα

I 15 N t3

J. Biomol. NMR, 25 (2003) 217

Recoupling Interactions: Principles

Hλ = C λ × R λ (Ω) × |{z} Tλ | {z } orientation

Decoupling (under MAS)

spins

Recoupling under MAS, synchronized sample/spin rotation

Sample motion (MAS or Brownian) R λ (Ω(t)) = 0

R λ (Ω(t)) = 0, T λ (t) = 0

Spins motion(rotation)

but

T λ (t) = 0

R λ (Ω(t)) × T λ (t) = 0

Recoupling Interactions: Principles Recoupling under MAS (AHT) for the Nuts

MAS modulation R λ (Ω(t)) ≈ cos ωR t Rotor-synchronized spin modulation (RF field) T λ (t) ≈ cos ωR t 1 cos ωR t + 2 2 Average Hamiltonian Theory

Hλ (t) = C λ cos2 ωR t =

λ

H =

Cλ 2

Recoupling Heteronuclear Dipolar Interactions: REDOR  2



R

N R

N R     

  

 D t 

 

REDOR : Rotational Echo Double Resonance

HIS = ωD (t)Iz Sz With ω D (t) = 0. With π pulses,

 I z S z  t 

HIS (t) = ωD (t) {Iz Sz } (t) But

 D t ×  I z S z  t ≠0

HIS = ωD (t) {Iz Sz } (t) 6= 0

Recoupling Heteronuclear Dipolar Interactions: REDOR

The variation of the signal amplitude with respect to the recoupling time is a dipolar oscillation. Analysis of the latter gives the interatomic distance.

Recoupling Homonuclear Dipolar Interactions: DRAMA Dipolar Recoupling At the Magic Angle

Spin part H

MAS modulation R 4

X

R 2

X

R 4

R 4 H zz t 

X

R 2

H yy t 

X

R 4 H zz t 

R

R 4 H zz t 

R 2 X

R 4

H zz t 

X

C 1 t 

H zz t 

Hyy = 0 Hzz = 0

S1 t  R H zz t 

H yy t 

Hyy 6= 0 Hzz 6= 0

H zz t 

Hyy = 0 Hzz = 0 C 2 t 

ij ωD (t)

=

X

Cn cos(nωR t)

n=1,2

+ Sn sin(nωR t)

S2 t 

Hyy = 0 Hzz = 0

Recoupling Homonuclear Dipolar Interactions: DRAMA Dipolar Recoupling At the Magic Angle R 4 H zz t 

X

R 2

H yy t 

X

0 < t < τR /4

R 4 H zz t 

C 1 t 

H1 = CDij

Z 0

τ /4

! ij ij C1 (t)dt Tzz = CDij ΛTzz

τR /2 < t < 3τR /4 ij ij Hαα = CDij ωD (t)Tαα

ij Tzz

= 2Izi Izj − Ixi Ixj − Iyi Iyj

ij Txx

= 2Ixi Ixj − Izi Izj − Iyi Iyj

ij Tyy

= 2Iyi Iyj − Ixi Ixj − Izi Izj ij ij ij Tzz + Txx + Tyy =0

ij H2 = CDij (−2Λ)Tyy

3τR /4 < t < τR ij H3 = CDij (Λ)Tzz

H = H1 + H2 + H3

Recoupling Homonuclear Dipolar Interactions: DRAMA Dipolar Recoupling At the Magic Angle R 4

Y

R 2

X

X

R 4

Y

R R 4

X

R 2

X

R 4

6  C D  I z I z −I y I y  ij

Y

R

j

i

j

Y

R

6  C ijD  I ix I xj −I iy I yj 

Y

H

i

= H1 + H2 + H3 =

ij ij 2ΛCDij Tzz − Tyy



=

6ΛCDij Izi Izj − Iyi Iyj



R

H Recoupling of the homonuclear dipolar interaction !

= =

 6ΛCDij Ixi Ixj − Iyi Iyj   6ΛCDij I+i I+j + I−i I−j

Y

Recoupling Homonuclear Dipolar Interactions: BABA Back to Back

DQ Spin dynamics

Y

R 2

Y X

R 2

X

R

Double Quantum (DQ) Hamiltonian H

Λ

 = 6ΛCDij Ixi Ixj − Iyi Iyj   = 6ΛCDij I+i I+j + I−i I−j = HDQ Z τ /4 = S1 (t)dt 0

ρ(0) Izi + Izj Izi + Izj

Izi + Izj   HDQ −−−→ I+i I+j , I−i I−j   HDQ ←−−− I+i I+j , I−i I−j =

H

e −iωi t

H

e −iωj t

H

e −i(ωj +ωj )t

H

e +i(ωj +ωj )t

I+i

−−CS →

I+i

−−CS →

I+i I+j

−−CS →

I−i I−j

−−CS →

Interatomic Distance Measurements 1

H

Distance measurement 90

Dec

CP

Dec

REC X CP

P

Rec

P

P

...

P

P

Homonuclear Dipolar Correlation Experiments 1

H

1

90

H

90

Dec

CP

 MIX

X 90

CP

P

AB

P

Dec

CP

Rec

P

...

 EXC

X 90

P

90 Rec

CP

P

DQ

P

A

P

...

RCV

SQ

Rec 90

P

AA

2 A

A AB

 A  B BA

B

2 B

B

BA

BB

B

A

B

A

Homonuclear decoupling + DQ: DQ-CRAMPS

L. Mafra et al. , JMR 196 (2009) 88-91

Homonuclear decoupling + DQ: DQ-CRAMPS

S.P. Brown et al., J. Am. Chem. Soc. 126 (2004) 13230

Rotational Resonance NMR CO



200

180

160

140

120 13

100 80 C Chemical shift (ppm)

60

40

20

0

40

20

0

Cα CO ∆ = νROT

200

180

160

140

120 13

100 80 C Chemical shift (ppm)

60

1 2 When δiso − δiso = nνR , recoupling of homonuclear dipolar interactions !

Perpespectives: Dipolar Truncation

M.J. Bayro et al., J. Chem. Phys. 130 (2009) 114506

Dipolar truncation: Rotational Resonance NMR Chemical Selectivity in the Polarization curve measurements

1

H

R2 Distance measurement 90

Dec

CP

X CP

90

Selective inversion

m

90

JACS 2003 (125) 2718-2722

Dipolar truncation: Proton Mediated X-X Correlation Proton Spin diffusion correlation

JACS 124 (2002) 9704-9705;

Quantum Mechanics Engineering for NMR I The evolution of the spin systems is fully characterized by the density matrix or operator ρ(t) which obeys the Liouville-von Neummann equation i

d ρ(t) = [H(t), ρ(t)] dt

Its formal solution is given by ρ(t) = U † (t, 0)ρ(0)U(t, 0) where U(t, 0) is the quantum evolution operator (or propagator)  Z t  b H(u)du U(t, 0) = T exp −i 0

Quantum Mechanics Engineering for NMR II

Th determine its evolution, ρ(t) has to be expanded on a basis set of (suitable) operators: ρ(t) =

X

aα (t)Aα where Aα operator basis

α

For example, for two spins I

Product Basis Iα1 Iβ2 (Ix1 Ix2 , Ix1 Iy2 , . . .)

I

12 ( T 12 , T 12 ) Tensorial basis Tk,m 1,m 2,m

I

Fictitious spin operators Ixij , Iyij , Izij (transition between |ii and |ji levels )

Quantum Mechanics Engineering for NMR III

e −iHt Ae +iHt

=

A + (−it)[H, A] +

... +

(−it)2 [H, [H, A]] 2

(−it)n [H, ..., [H, A] . . .] + . . . {z } n! | n commutators

Simplification with cyclic commutation rules [A, B] = iC e −iφB Ae +iφB

[B, C ] = iA

[C , A] = iB

= A cos φ − i[B, A] sin φ = A cos φ + C sin φ

For example {Ix , Iy , Iz }

{Ix , 2Iy Sz , 2Iz Sz }

{Sy , 2Iz Sz , 2Iz Sx }

Quantum Mechanics Engineering for NMR IV Common situation in NMR H(t) = Hbig (t) + Hsmall (t) What is the effect of Hbig (t) on Hsmall (t) ? Go into the Hbig (t) frame (generalized rotating frame) to take Hbig (t) out. † ρe(t) = Ubig (t, 0)ρ(t)Ubig (t, 0) e H(t)

† † d = Ubig H(t)Ubig −iUbig Ubig {zdt } |

Corriolis / Gauge term

=

† Ubig

esmall (t) (H(t) − Hbig (t)) Ubig = H

ee  e e small + H  (t) H(t) ≈H small

e small = 1 H τbig

Z

τbig

esmall (u)du H 0

Reduced Wigner matrix and irreducible Tensor

Reduced Wigner matrix and irreducible Tensor