Poster - David Alleysson

On adaptive non-linearity for color discrimination and cirromatic adaptation. David Alleysson & Sabine Süsstrunk Laboratoire de la communication ...
252KB taille 2 téléchargements 289 vues
O n a d a p tiv e n a n I n tr o d u c tio n

D a v id A lle y s s o n &

A s s u m in g th a t th e p h o to re c e p to r re s p o n s e o f th e h u m a n v is u a l s y s te m

is a d a p tiv e a n d n o n -lin e a r, w e c a n d e riv e

m a th e m a tic a l p ro p e rtie s th a t c a n a c c o u n t fo r b o th c o lo r d is c rim in a tio n a n d c h ro m a tic a d a p ta tio n . T h is c o u ld b e d u e to th e p h o to re c e p to rs re s p o n s e to illu m in a tio n ,

0 .4

0 .2

0 .1

W e a n d th e m o

c a n a rg u e n o n -lin e a re la y b e tw d e le d w ith

L

L

W h ic h c a n b e re w ritte n u s in g a n a u to m a tic g a in c o n tro l a d a p ta tio n a s fo llo w :

0 .2

0 .3

0 .4

0 .5

T h is m a trix c a n b e d e c o m p o s e d a s x

0 .7

0 .6

th a t p h o to re c e p to r rity in th e v is u a l s y e e n re tin a a n d c e re a d a p tiv e n o n -lin e a

M

S S

0

l

X P h o to re c e p to r tra n s d u c tio n

0

x

A c h ro m a tic a n d c o lo r o p p o s itio n s c o d in g

c

A

C C

0

D D

0

a

Y

c

d W

120

L

y

R J B

450

450

400

400

100

M

350

S

80

60

250 200

300 250 200

150

150

100

0

M

0

50

100

50

0

L

150

200

250

300

350

0

50

0

L

-50

400

100

150

200

250

300

0

400

40

200 150

20

T h u s

L

120

140

160

M

W h ic h is e q u iv a le n t to v o n K rie s lin e a r a d a p ta tio n m o d e l

100 50

60

50

40

30

20

90

100

L

110

120

130

140

150

-50 15

160

20

25

30

M

35

40

500

500

100

400

400

S

200

40

50

100

150

200

300

350

400

50

100

150

L

-100 200

250

300

350

0

400

50

40

30

160

180

-50 70

120

300 250

90

100

L

110

120

130

140

150

160

M d

0

S

80

is th e

n n e ls . e rro r

T h e in c a n b e o p p o n a d a p ta

ig g e r e rro r b u t c o n s is te n t d e te rm in a tio n . p re s e rv in g + e ig e n v a lu e s .

60

60

40

P

20

20

0

20

40

P

0 60

80

A s p re v io u s ly , w e c a n th b e tte r p re d ic ts c o rre s p o n n o n -lin e a rity b y its e lf. N a n d th a t it is n o t p o s s ib le lin e a r o p tim iz a tio n , s u c h c h o o e u se N a k lm s a

s e n to th e H a -R u s n d l 'm

c o P E h to 's '

100

e re d in o te to a s

120

0

20

40

fo re te s t if th e th re g c o lo r d a ta th a n p th a t th e th re e -la y e d e te rm in e a ll m o d e ig e n v a lu e s d e c o m

m p u te m a trix n la w o c a n b e

th e to n L e x p

c o rre sp o n tra n s fo rm M S . N o w re sse d a s

60

e -la y e r m h o to re c e r m o d e l e l p a ra m p o s itio n

d in g X Y Z th e c a lin e

80

o d p to is n e te .

c o lo r d a ta to L M S . o rre sp o n d a r re la tio n

100

E ig e n V a lu e s H P E L in e a r B ra d fo rd S h a rp 3 -la y e r m o d e l

6 .9 5

1 4 .5 1 9 .5 3 8 .3 0 6 .7 6

-50 15

20

25

30

35

M

40

45

50

55

60

65

10

20

a b ility to u s e in te rp re te d th e n t c o lo r is n o tio n . A ls o a n

W e h a v e sh o p h o to re c e p to d is c rim in a tio lin e a r p h o to r a n d v o n K rie a firs t a p p ro x

S

80

0

30

40

50

60

70

80

90

E i g e n v a l u e d e c o m p o s i t i o n i s n o t p o s s i b l e w i t h L a m 's d a t a a s th e e ig e n v a lu e s b e c o m e c o m p le x . W e u s e th e s in g u la r d e c o m p o s itio n in s te a d , s o w e w rite :

120

e l r

o t lin e a r r b y a in lm s W e th e n a n c e .

T h e v o n re s u lts w o f th e re sp a c e a n p h y s io lo m o d e l. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

13. 14. 15. 16.

0 80

a trix . a c e a n a l c h a a lle r

10

200

50

0

140

100

100

50

120

80

150

20

L

M

400

S

250 200 150

100

60

350

300

100

80

40

450

350

S

60

10 60

20

G F 450

70

M

65

0

0

80

60

100

-100 250

55

200

0

L

0

50

300

100

20

0

S

300

45

ll 3 x 3 m c o n e sp in d iv id u a lu e s. S m

W e fo u n d th a t th e le a s t-s q u a re s e rro r c a lc u la te d in X Y Z is s ig n ific a n t s m a lle r th a n w ith o th e r m e th o d , a s s h o w n in th e fo llo w in g ta b le .

0

80

120

60

120

150

50

W R J B

80

100

250

100

-50 70

180

80

200

0 100

60

300

S

250

L -M

30

80

40

350

300

S

50

60

20

400

350

60

10 40

M

-50

350

G F

70

M

100

50

20

T h e re fo re , m a th e m a tic a lly , p h o to re c e p to r a d a p tiv e n o n -lin e a rity is c o m p a tib le w ith th e c o lo r d is c rim in a tio n m o d e l a n d c h ro m a tic a d a p ta tio n m o d e l.

70

100

W e h a v e sp a c e . W a p p ly th e b e tw e e n

350

S

300

40

W h e n c o n s id e rin g c h ro m a tic a d a p ta tio n , w e w is h to m a p th e a p p e a ra n c e o f a c o lo r u n d e r tw o a d a p tin g c o n d itio n s . U s in g p h o to re c e p to r fu n c tio n a s a p p e a ra n c e m o d e l, th is le a d s to

80

Modele lineaire:Bradford dans XYZ:lam.da.dat

100

0

T h is m o d e l is a b le to a c c o u n t fo r e llip s o id s in e v e ry o rin e ta tio n a s s h o w n in a p re v io u s p a p e r (A lle y s s o n & H e ra u lt C R A ).

m

n

is c r im in a tio n

120

40

G a n g lio n fu n c tio n 0

fu S e v

Modele lineaire:eig dans XYZ:lam.da.dat 120

s m

A

w h e re D is a d ia g o n a l m a trix a n d M a lin e a r tra n s fo rm a tio n fro m X Y Z to L M D is c o m p o s e d o f s c a lin g fa c to rs fo r th - M a n d D a re e ig e n v e c to rs a n d e ig e n b u t n o t m e a n in g fu ll d e c o m p o s itio n . - H u n t, R L A B , M = H P E , D = M i/M j, b w ith v o n K rie s m o d e l. - B ra d fo rd , D = M i/M j, M le a s t s q u a re - F in la y s o n & S u s s tru n k W h ite -p o in t

s a re n o t th e o n ly s ite o f a d a p ta tio n s te m . G a n g lio n c e lls , w h ic h fo rm b ra l c o rte x , s h o u ld a ls o b e rity .

M

0

w ith

l

r d tio

A w a y fo r e s tim a tin g T is to m in im iz e th e le a s t-s q u a re s e rro r b e tw e e n th e e s tim a te g iv e n b y th e lin e a r m o d e l a n d m e a s u re d S .

0 .6

a d a p ta tio n s ta te

p e ra te s a s a s c a lin g fa c to r, c o n d itio n a n d th e p o s itio n in tio n a llo w s c o n v e rtin g sp h e re s.

lo ta

T is a 3 x 3 m a trix

c o lo r d a ta .

n o n -lin e a rity o th e a d a p ta tio n h is tra n s fo rm a e llip s o id s in to

c o a p

W e c a ll P a m a trix o f c o lo r trip le ts o f N c o lo r s u rfa c e s u n d e r illu m in a n t i a n d S a n o th e r s e t o f c o lo r trip le ts c o rre s p o n d in g to th e s a m e p e rc ie v e d c o lo r u n d e r a s e c o n d illu m in a n t j. A c c o rd in g to v o n K rie s c h ro m a tic a d a p ta tio n m o d e l, th e re la tio n s h ip b e tw e e n c o rre s p o n d in g c o lo rs is lin e a r. S v a lu e s c a n th e re fo re b e d e riv e d a s a lin e a r c o m b in a tio n o f P v a lu e s .

y

0 .8

p ro c e s s in g , a n d s h o w h o w w e c o u ld p re d ic t c o rre s p o n d in g

d a p tiv e d in g o n sp a c e . T in a tio n

r d

C h r o m a tic a d a p ta tio n

w ith

th e d is c u s s io n to a th re e -la y e r m o d e l o f re tin a l c o lo r

T h e a d e p e n c o lo r d ic rim

fo a

w ith T h e n o n -lin e a r m o d e l tra n s fo rm s th e e llip s o id , s u c h th a t it b e c o m e s

d is c rim in a tio n a n d c h ro m a tic a d a p ta tio n d a ta . W e e x te n d

X

r ity a tic

E llip s o id n u m b e r i is d e fin e d b y th e fo llo w in g e q u a tio n

a n d a n a u to m a tic g a in c o n tro l fu n c tio n , w e c a n d e riv e c o lo r

If w e ta k e th e lin e a r a p p ro x im a tio n a rro u n d a c o lo r

e a o m

C o lo r d is c r im in a tio n

s ta te . A s s u m in g th e N a k a -R u s h to n n o n -lin e a r fu n c tio n

T h e p h o to re c e p to r re s p o n s e is g iv e n b y N a k a -R u s th o n la w : lig h t v a lu e s

-lin c h r

S a b in e S ü s s tr u n k L a b o r a to ir e d e la c o m m u n ic a tio n a u d io - v is u e lle L C A V - E P F L S w itz e r la n d { D a v id .A lle y s s o n ,S a b in e .S u s s tr u n k } @ e p f l.c h

w h ic h is n o n -lin e a r a n d v a rie s a c c o rd in g to th e a d a p ta tio n

P h o to r e c e p to r r e sp o n se

o n d

w n th a rs c a n n a n d e c e p to s a d a p im a tio

e ig a t t c in c

e n v th e o n s o m

a lu e d e c o e n c o d in g ta n t a n d v p le te a d a p

m p o s itio n in to lu m in a rie s w ith ta tio n c o u

o n a n c th e ld b

L a m 's d a t a e a n d sta te o f e c o n s id e re d .

C o n c lu s io n t a m o d e l e x p la in b o c h ro m a tic r m o d e l, w ta tio n in L n o f th e re

o f a d a p tiv e n o n -lin e a rity in th v is u a l p h e n o m e n a o f c o lo a d a p ta tio n . A n a d a p tiv e , n o n h ic h is e q u iv a le n t to lin e -e le M S s p a c e , c a n b e c o n s id e re d e l p h e n o m e n o n .

K rie s c h ro m a tic a d a p ta tio n m o d e l d o e h e n a p p lie d in c o n e s p a c e . H o w e v e r, a tin a th a t in c lu d e s th e re la tio n s h ip o f e n d a fte rw a rd s in to o p p o n e n t c o lo r s p a c e g ic a l p ro c e s s w ith th e v o n K rie s c h ro m

r

m e n t a s

s n o t g iv e g o o d th re e -la y e r m o d e l c o d in g in to c o n e c o u ld re la te th e a tic a d a p ta tio n

D. L. MacAdam. “Visual sensitivities to color differences in daylight.” Journal of Optical Society of America, 32, pp. 247-273, 1942. K.M. Lam. “Metamerism and color constancy ” Ph.D. Thesis, University of Bradford, 1985. G.D Finlayson and S. Süsstrunk. “Pe rformance of a chromatic adaptation transform based on th spectral sharpening,”Proc. IS&T/SID 8 Color Imaging Conference , pp. 49-55, 2000. D. Alleysson and J. Herault “Photoreceptor non -linearity can account for the MacAdam ellipses,” Perception Supp., 26, pp. 106, 1997. K.I. Naka and W.A. Rushton “S -potentials from colour units in the retina of fish (Cyprinidae),” Journal of Physiology, 185(3), pp. 536-555, 1966. R.D. Hamer and C.W. Tyler “Phototransduction: Modeling the primate cone flash response,” Visual Neuroscience, 12, pp. 1063-1082, 1995. D.A. Baylor, B.J. Nunn and J.L. Schnapf “Spectral sensitivity of cone of the monkey macaca fascicularis,” Journal of Physiology, 390, pp. 145-160, 1987. S. Süsstrunk, J. Holm and G.D. Finlayson, “Chromatic adaptati on behavior of different RGB sensors,” Proc. SPIE, vol 4300, pp. 172-183, 2001. T. Yeh, V.C. Smith and J. Pokorny, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,”Vision Research, 33, pp. 1835-1845, 1993. M.A. Webster and J.D. Mollon “The influence of contrast adaptation on color appearance,” Vision Research, 34, pp. 1993-2020, 1997. D. Alleysson and J. Hérault “Variability in color discrimination data explained by a generic model with non linear and adaptive processing,” Color Research and Applicatio n, 26, 2001. R. Shapley and C. Enroth -Cugell, “Visual adaptation and retinal gain controls,” In Progress in Retinal Research, Osborne, N. N. and Chader, G. J., editors, volume 3, pp. 263 -346. Oxford: Pergamon Press. G. Wyszecki and M.S. Stile,Color Science, Wiley, New York, pp. 654-676, 1982. Additional figures and author bibliography can be found at: http://lcavwww.epfl.ch/~alleysso/CGIV2002. Corresponding color data sets can be found at: http://colour.derby.ac.uk/colour/info/catweb/ M.D. Fairchild, Color Appearance Models , Addison-Wesley, 1998.