Phase-shifting fringe tracking method for sparse aperture

based on the VLTI parameters and the optical concept of POPS, a 2nd-generation fringe tracker proposed to ESO in 2010, using an. Integrated Optics Combiner ...
313KB taille 1 téléchargements 248 vues
Phase-shifting fringe tracking method for sparse aperture interferometer arrays F. Hénault Institut de Planétologie et d’Astrophysique de Grenoble, Université Joseph Fourier, CNRS, B.P. 53, 38041 Grenoble – France

Conventional fringe tracking

Phase-shifting mode • Inject three successive phase-shifts φ = 0, 2π/3 and –2π/3 into a reference waveguide

VLTI beams injection

Hardware

Image plane

Multi-axial IO combiner

Principle Polychromatic interferogram

λ

λ3

X’ Monochromatic interferogram

λ1

X’

• For a given spectral channel [λ-δλ/2, λ+δλ/2] • Compute complex OTF via inverse Fourier transform

X

0

• Extract phase differences over the first N(N–1)/2 OTF peaks

X

• Compute piston errors from phase differences

a

12a

7a

2a

Fringe pattern

- Conventional fringe tracking is achievable by means of spectral decomposition of the interferograms generated by a multi-axial, non redundant arrangement of the fringe tracker exit sub-pupils - The fringe tracker can also be operated in phase-shifting mode: Three interfeerograms are measured, for different values of the phase-shifts φ1 = 0, 2π/3 and 4π/3 introduced into a reference sub-pupil - The OPDs are directly sensed on all other sub-pupils by means of simple algorithms (linear combination, FFT…) -Those sub-pupils can be arranged into a fully redundant geometry, allowing one to decrease dramatically the total number of required pixels (see Table below) and thus the measurement noises - Numerical simulations were carried out, based on the VLTI parameters and the optical concept of POPS, a 2nd-generation fringe tracker proposed to ESO in 2010, using an Integrated Optics Combiner (IOC)

Low dispersion spectrograph

λ2

Multi-axial IO combiner

Input spectrograph

X’ • Obtain three phase-shifted interferograms

X’

• Combine interferograms with complex coefficients

1, exp[2iπ/3] and exp[-2iπ/3] • Compute synthetic OTF via inverse Fourier transform

1

X • Extract phase differences over the first N–1 OTF peaks

X

• Compute piston errors from direct phase measurements

Software

3a

6a

4a

2a

Non-redundant vs. fully redundant pupil arrangement: Allows for wider interfringe distance and less sampling pixels

X

2a

2a

2a

2a

2a

Software

2a

X Interferograms

-188

-141

-94

-47

0

47

94

141

188

235

282

0.75

Phase extraction on 28 channel pairs

0.5 0.25 0 -282

-235

-188

-141

-94

-47

0

47

94

141

188

235

282

1 0.5 0 -0.5

255

565

4.64

4.81

0 -57

-188

-141

-94

-47

0

47

94

141

188

235

282

IOC exit aperture

F / 4.5

Total number of pixels Number of pixels per fringe

F / 3.3

F / 2.5

41

75

115

4.67

4.55

4.49

50

40

100

50

80

40

RMS error (nm)

Success ratio (%)

With phase-shifting

IOC exit aperture

F / 6.5

F / 5.5

20

20

0

0

0

0

4

5

6

7

8

Magnitude of guide star

4 Telescopes, Group delay mode

9

10

0

1

2

3

4

5

6

7

8

Magnitude of guide star

6 Telescopes, Group delay mode

57

9

10

0 -57

-38

-19

0

38

57

Reference channel location

19

38

57

0.5 0 -0.5 -1 -1.5 -57

-38

-19

0

19

38

57

Pixel #

0.3

0.15

0 -57

-38

-19

0

19

38

57

Pixel #

Results

80

40

40

20

0 4

19

0.45

60

3

0

Pixel #

No phase-shifting

2

-19

1

60

1

-38

1.5

100

0

0.5

0.25

0.2

0

F / 4.7

0.75

0.4

With phase-shifting

40

0 3

80

10

20

2

80

20

40

1

100

60

10

0

100

With phase-shifting

20

38

Pixel #

30

60

19

0.6

-57

No phase-shifting

No phase-shifting

30

0

0.6

Fringe tracker parameters after preliminary optimization

Pixel #

-19

Pixel #

RMS error (nm)

-235

-38

0.8

-1 -1.5 -282

RMS error (nm)

Normalized phase

Pixel # 1.5

95 4.8

Success ratio (%)

MTF (arbitrary units)

Pixel #

1

0.2

MTF (arbitrary units)

-235

1

Phase extraction on 7 waveguide channels

0.4

Normalized phase

-282

0.6

5

6

7

8

9

Success ratio (%)

0

Total number of pixels Number of pixels per fringe

Intensity (arbitrary units)

0.2

Intensity (arbitrary units)

0.4

Intensity (arbitrary units)

CASE

0.6

fringe tracking Conventional in phasefringe tracking shifting mode

Intensity (arbitrary units)

0.8

4 6 8 telescopes telescopes telescopes

0.8

- No clear advantage for 4 and 6 telescopes, but one magnitude gain with eight telescopes - Gain expected to increase as more and more telescopes are added (10, 12 etc…)

10

Magnitude of guide star

8 Telescopes, Group delay mode

Contact [email protected]