Pedestrian Detection using Infrared Images and Histograms of

Application : pedestrian detection with infrared images. Objectives using HOG method for pedestrian detection, extracting windows from infrared images.
3MB taille 18 téléchargements 305 vues
Pedestrian Detection using Infrared Images and Histograms of Oriented Gradients F. Suard1 , A. Rakotomamonjy1 , A. Bensrhair1 , A. Broggi2 [email protected] 1

Laboratoire d’Informatique, Traitement de l’Information, Syst`emes. INSA de Rouen, Rouen, France 2 Dipartimento di Ingegneria dell’Informazione, Universit` a di Parma, Parma, Italy Intelligent Vehicle Symposium 2006 Tokyo, 14th June 2006

Introduction

HOG Method

Application

Conclusion

Introduction Machine learning and vision system. Histogram of Oriented Gradient [DT05], Classifier : Support Vector Machines [Vap98]. Application : pedestrian detection with infrared images.

Objectives using HOG method for pedestrian detection, extracting windows from infrared images. F. Suard

2

Introduction

HOG Method

Application

Conclusion

Histogram of Oriented Gradient

Introduced by N. Dalal and B. Triggs [DT05] ⇒ representing an image (128 × 64 pixels) with a vector. Computation of local gradient histograms.

F. Suard

3

Introduction

HOG Method

Application

Conclusion

HOG computation steps Original Image :

F. Suard

4

Introduction

HOG Method

Application

Conclusion

HOG computation steps Gradient Orientation and Norm:

F. Suard

4

Introduction

HOG Method

Application

Conclusion

HOG computation steps Cell Splitting:

F. Suard

4

Introduction

HOG Method

Application

Conclusion

HOG computation steps Histogramm normalization, block 1:

Final descriptor: [0.01 0.5 0 0.8] F. Suard

4

Introduction

HOG Method

Application

Conclusion

HOG computation steps Histogramm normalization, block 2:

Final descriptor: [0.01 0.5 0 0.8 0.2 0 0.9 0] F. Suard

4

Introduction

HOG Method

Application

Conclusion

HOG computation steps Histogramm normalization, block n:

Final descriptor: [0.01 0.5 0 0.8 0.2 0 0.9 0 ... 0.6 0.7 0.1 0] F. Suard

4

Introduction

HOG Method

Application

Conclusion

HOG parameters Parameters cell: number of pixels, block: number of cells, overlap, normalization factor (no, L1, L2), histogram: number of bins, weighted vote(gradient magnitude, vote). Exhaustive test for parameters tuning, Dataset : pedestrians and non-pedestrians manually extracted.

F. Suard

5

Introduction

HOG Method

Application

Conclusion

HOG parameters Optimal set of parameters size of cell : 8 × 8 pixels, size of block : 2 × 2 cells, overlap between blocks : 1 cell, normalization factor for block : L2, number of bins per histogram : 8 weigthed vote for histogram : gradient magnitude.

⇒ Descriptor dimension: 3360

F. Suard

6

Introduction

HOG Method

Application

Conclusion

Linear SVM Classifier Data X ∈ Rn Label y ∈ {−1, 1} Decision function f (x) =

Pm

k=1 αk

· yk · hxk , xi + b

Class of X = sign of f (x)

F. Suard

7

Introduction

HOG Method

Application

Conclusion

Single Frame Classification ROC Curve for single frame classification (test dataset: 4400 examples) when size of learning dataset varies :

Confusion matrix (1000) True P N P 2096 54 Prediction N 71 2079 detection 0.9749 accuracy 0.9709 precision 0.9672

F. Suard

8

Introduction

HOG Method

Application

Conclusion

Single Frame Classification ROC Curve for single frame classification (test dataset: 4400 examples) when size of learning dataset varies :

Confusion matrix (1000) True P N P 2096 54 Prediction N 71 2079 detection 0.9749 accuracy 0.9709 precision 0.9672

For 90 % of good recognition : 1 false-positive for 330 windows examined F. Suard

8

Introduction

HOG Method

Application

Conclusion

Misclassification

Examples of bad classification :

misclassification

misclassification

F. Suard

false-positive

false-positive

9

Introduction

HOG Method

Application

Conclusion

HOG applied to infrared images

Application infrared images, pedestrian detection. ⇒ Windows extraction function Particularity of infrared images Warm area (pedestrian head) appears lighter

F. Suard

10

Introduction

HOG Method

Application

Conclusion

Windows extraction Original Image:

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction Warm areas:

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction Warm area of the second pedestrian:

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction Gradient :

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction left and right bounds:

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction upper bound:

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction lower bounds:

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction combination and windows extraction (> 1000):

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Windows extraction Classification:

F. Suard

11

Introduction

HOG Method

Application

Conclusion

Results Windows which prediction are over threshold :

f (x) > 0

f (x) > 0.5 F. Suard

12

Introduction

HOG Method

Application

Conclusion

Results

f (x) > 0

f (x) > 0.5

F. Suard

13

Introduction

HOG Method

Application

Conclusion

Results

f (x) > 0

f (x) > 0.5

F. Suard

14

Introduction

HOG Method

Application

Conclusion

Results

f (x) > 0

f (x) > 0.5

F. Suard

15

Introduction

HOG Method

Application

Conclusion

Results

f (x) > 0

f (x) > 0.5

F. Suard

16

Introduction

HOG Method

Application

Conclusion

Conclusion and perspectives + Good results for single frame classification, Answer for pedestrian size variability, Good generalization for pedestrian pose variability. Parameters, Windows extraction. Perspectives Improve performance, reduce computation time, work with sequences. F. Suard

17

Introduction

HOG Method

Application

Conclusion

References

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, International Conference on Computer Vision and Pattern Recognition, volume 2, pages 886–893, INRIA Rhone-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005. A. Broggi A. Fascioli P. Grisleri T. Graf M. Meinecke. Model-based validation approaches and matching techniques for automotive vision based pedestrian detection. In Intl. IEEE Wks. on Object Tracking and Classification in and Beyond the Visible Spectrum, San Diego, USA, page in press, June 2005. V. Vapnik. Statistical Learning Theory. Wiley, 1998.

F. Suard

18