

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Online time constrained scheduling with penalties

May 31, 2008 - This is why online algorithms have been proposed. to the description of the algorithm, we call accepted a job for inclusion if it satisfies: â‹ƒ.

 Télécharger le PDF

 172KB taille
 7 téléchargements
 343 vues

 commentaire

 Report

Online time constrained scheduling with penalties Nicolas Thibault

Christian Laforest

´ IBISC, Universit´e d’Evry/CNRS, 523 place des Terrasses, 91000 Evry, France. email: ,

Abstract In this paper we prove the (constant) competitiveness of an online algorithm for scheduling jobs on multiple machines, supporting a mechanism of penalties for the scheduler/operator. Our context (online, multiple machines, supporting parameterizable penalties) is more general than in previous existing works. The main contribution of our paper is the (non trivial) analysis of our algorithm. Moreover, with our parameterizable penalties, the operator can find a trade-off between the attractiveness of its system and its own profit (gained with non canceled scheduled jobs). Keywords: online scheduling, weight maximization, competitive ratio, penalties.

1

Introduction

Most of the scheduling techniques are offline, i.e. needs the entire instance to be known in advance. However, in many situations the scheduler does not have this full information and discovers the jobs one by one. When a job is revealed, the scheduler must decide: schedule or reject it. This is why online algorithms have been proposed. As the optimal schedule is often impossible to obtain, an online algorithm is evaluated by comparing the value of its schedule (depending of the parameter to optimize) to the value of an optimal offline schedule. The ratio of these two values is called competitive ratio (see [6]). In this sub-domain of (online) scheduling, many works are devoted to systems with only one machine. In this particular case, there is no parallelism and the analytical comparison between the optimal schedule and the constructed one is easier. Moreover, most of previous works do not penalize an algorithm which cancels already scheduled jobs for more profitable ones. In this paper, we propose a penalty model where the scheduler is penalized when he cancels already accepted jobs.

In spite of these three difficulties (online, multiple machines, penalties) we propose a non trivial analysis of a (natural) online algorithm for multiple machines having a constant competitive ratio. In the rest of the paper we define the exact model we consider, describe our algorithm and interpret our competitive analysis. Then in the main part of the paper, we prove the competitiveness of our method. As the proof is tricky, we first describe the main steps and then give the full proof.

Our model. We consider the problem of scheduling independent jobs submitted online by clients to an operator (scheduler) managing a set of k ≥ 1 identical machines. Each job is a triplet Γ = (r, d, p), where r denotes its release date, d its deadline and p ≤ d − r its processing time and its weight (w(Γ) = p). When a job is revealed by a client, the operator can reject it (and it is lost) or schedule it. The operator gains a profit of w(Γ) = p units (of money for example) if it schedules a job Γ = (r, d, p) (i.e. if the job is executed without interruption on one machine during p units of time between the dates r and d). The last possibility is when Job Γ = (r, d, p) is scheduled and later canceled by the operator (for example to schedule a “more interesting job” on the same machine). In this case, the operator is penalized since: (1) he does not gain w(Γ) and (2) he must pay a penalty equals to βp units of money to the canceled client. The weight of a schedule is the total weight of all scheduled (and not canceled) jobs minus the penalties (See Definition 1 for a proper definition of the weight including penalties). This notion of penalty (via the value of parameter β) can be used to balance the fairness of the system between the operator trying to maximize his profit and the clients trying to obtain a resource. Our objective is to maximize this total weight with penalties (i.e. by taking into account the penalties of canceled jobs). To measure the quality of online algorithms, we use the standard definition of competitive ratio including the weight penalties (see Definition 2).

Comparison with previous works. There has been extensive research on online scheduling (see for example [1, 2, 3, 4, 7, 9, 8, 10, 11, 12, 13, 14, 15, 16, 17]). Recently, Fung [8] and Zheng et al. [17] introduced penalties in the context of online jobs (p ≤ d − r) scheduling. Their context is very closed to ours but their results are restricted to systems with only one machine (see Table 1). To the best of our knowledge, we propose the first analytical results for the general problem of scheduling jobs online on parallel machines with cancelation penalties. In Table 1 we summarize the differences between our online scheduling model and previous ones: For each reference we indicate if it is restricted to intervals (i.e. the particular case where p = d − r) or not (i.e. the general case of jobs where p ≤ d − r), if it is restricted to a single machine (k = 1) or not (the general case of parallel machines k ≥ 1), if penalties are considered or not and the weight model. Ref. This paper [4, 7] [15]

Jobs/Int. jobs intervals jobs

Machine k≥1 k≥1 k≥1

Penalties yes no no

[9, 16]

intervals

k=1

no

[1, 10] [12, 14]

jobs

k=1

no

[8, 17]

jobs

k=1

yes

Weight w(σ) = p w(σ) = p w(σ) = 1 w(σ) = 1 or w(σ) = f (p) w(σ) = 1 or w(σ) = p w(σ) = p or w(σ) = f (p)

The weight with penalties of a schedule S is then wp (S) = σ∈S wp (σ). Definition 2 (Competitive ratio) Let Γ1 , . . . , Γi , . . . be any online sequence of jobs. Let A be any online algorithm returning at each step i a valid schedule S of {Γ1 , . . . , Γi } and let S ∗ be a valid schedule of {Γ1 , . . . , Γi } optimal for the weight (i.e. a schedule of maximum weight). Algorithm A has a competitive ratio c (or is c − competitive) for the weight with penalties if c · wp (S) ≥ w(S ∗). The objective is to construct a final schedule with the minimum competitive ratio. We underline the fact that we use w(S ∗) instead of wp (S ∗) in Definition 2 because no cancellations occur when we consider the optimal offline solution S ∗ . Algorithm A. We present a natural online method of weight maximization. Let α > 1 be any constant chosen by the operator at the beginning of the execution. In the following, we will fix α to optimize the competitive ratio of A. The main idea of the algorithm is to schedule the new revealed job Γ on a machine if its weight is α times greater than the sum of the weights of the already scheduled jobs that must be canceled to schedule Γ on this machine. We now describe Algorithm A for our context of parallel machines. Algorithm A Let k be the number of machines and S be the current schedule. Let Sj (1 ≤ j ≤ k) be the sub-schedule of S on machine j. Let Γ = (r, d, p) be the new revealed job. I F there is a machine j such that there exists an interval σ ⊆ [r, d[of length p satisfying w(σ) ≥ α σ ∈Sj and σ ∩σ=∅ w(σ) T HEN cancel (if necessary) intervals σ and schedule Γ as interval σ on machine j E LSE reject Γ.

Table 1. Our results versus previous ones

2

Definitions

In order to define more formally the competitive ratio for our problem, we first introduce what we call the weight with penalties. Let Γ = (r, d, p) be the new job revealed. If the operator chooses to schedule it, he must: (1) choose an interval σ (of length p, between dates r and d) and (2) choose a machine to schedule σ. If this machine already contains executed jobs during (intersecting) Interval σ, the operator cancel them. If W is the total weight of these canceled jobs, then, the operator pays a penalty of βW . Definition 1 (Weight with penalties) Let β ≥ 0 be any fixed constant of penalty. Let Γ be the new revealed job scheduled as Interval σ, of weight w(Γ) = w(σ). The weight with penalties of Γ is w(σ) wp (Γ) = wp (σ) = w(σ) − β · {σ : σ is cancelled by σ}

3

Main result

Theorem 1 Let β ≥ 0 be any constant of penalty. Let α > β + 1 be any constant fixed by the operator at the beginning ofthe execution of Algorithm A. Algorithm β 1 A is (2α + 3) 1 + α−β + α−β−1 - competitive for the weight with penalties, i.e. for every online sequence Γ1 , . . . , Γi , we have: 1 β + (2α + 3) 1 + wp (S) ≥ w(S ∗) α−β α−β−1

Where S is the current schedule and S ∗ is the maximum weight schedule that can be obtained from the set of jobs {Γ1 , . . . , Γi } Illustration and comments of Theorem 1: We recall that the constant of penalty β represents for the operator the cost associated to the cancellation of a job (proportional to the sum of the weights of canceled jobs). For instance: • If β = 0: No penalty has to be paid when a job is canceled. The competitive ratio is then ≈ 13.32 (the min 1). imum value of Function α → (2α + 3) 1 + α−1 • If β = 0.2: The operator has to pay a penalty of 20 % of the sum of the weights of canceled jobs. The competitive ratio is then ≈ 14.63 (the minimumvalue 0.2 1). + α−1.2 of Function α → (2α + 3) 1 + α−0.2 The value of β must be chosen by the operator according to two aspects: the worst case profit he wants to ensure (i.e. the value of the competitive ratio) and the attractivity for clients in terms of offered compensation (See Table 2). With our result, the operator can choose/tune β in order to find the right balance between a good competitive ratio and a good attractivity. β c

0 13.32

0.2 14.63

1 20.14

5 55.77

10 90.38

100 810.04

Table 2. The competitive ratio c of A as a function of β

4 4.1

Proof of Theorem 1 Sketch of the proof

As the proof of Theorem 1 is long, tricky and involves a lot of technical objects, we first give in this section the sketch of the proof with references to the lemmas and definitions useful to understand the main ideas of the complete proof of Section 4.2. We underline the fact that this proof is rather technical because we consider in the same model jobs with non tight release dates and deadlines, revealed online in a system composed of parallel machines. In order to prove the competitiveness of Algorithm A, we have to compare wp (S) (the weight with penalties of the schedule constructed by Algorithm A) with w(S ∗) (the weight of an optimal solution). To do that, we have to compare the weight of the jobs in the current schedule S and the best possible schedule that could have been constructed with the jobs of S but also with the jobs rejected by A and the ones canceled by A. These last ones do not appear in S, this means that they do not increase the benefit but, in fact,

decrease this benefit since the operator has to pay penalties. Hence, these jobs are important for the analysis. According to the description of the algorithm, we call accepted a job that has not been rejected when it was revealed. Note that such a job may appear in S or may have been later canceled. First step: comparison between w(E(σ)) and w(σ) In order to compare wp (S) with w(S ∗), we start by proving the following result on one machine. We split Sj∗ (the subschedule of S ∗ on machine j) in two sub-schedules (See Definition 6): • Sj∗A is the set of jobs of Sj∗ accepted by Algorithm A. • Sj∗B is the set of jobs of Sj∗ rejected by Algorithm A. We start by comparing the weight w(σ) of each job σ in Sj∗B with the weight w(E(σ)) of its “associated zone” E(σ), which is a well chosen sub-set of the set of jobs accepted by Algorithm A on machine j (See Definition 5). Then, by using the fact that Algorithm A rejects Job σ if and only if the weight of its associated zone is at least equal to w(σ) α , we obtain (See Lemma 1): α · w(E(σ)) ≥ w(σ)

(1)

Second step: comparison between w(Tj) and w(Sj∗B) Inequality (1) compares the weight of one job in Sj∗B (rejected by the algorithm) with the weight of one sub-set of the set of jobs accepted by Algorithm A on machine j. In the second step of the proof, we use this first result in order to compare the weight of all the jobs in Sj∗B with the weight of the union of the sub-sets of jobs (called Tj) accepted by Algorithm A on machine j. Thus, by using (1) and other arguments, we obtain (See Lemmas 2, 3 and 4): (2α + 2)w(Tj) ≥ w(Sj∗B)

(2)

Third step: comparison between w(T) and w(S ∗) We now compare the weight of all the jobs accepted by Algorithm A on any machine (this set of jobs is denoted by T) with the weight of an optimal schedule on k machines (denoted by S ∗). By using (2) and other arguments involving the jobs of Sj∗A (for each machine j), we obtain (See Lemma 5): (3) (2α + 3)w(T) ≥ w(S ∗) Fourth step: comparison between wp (S) and w(T) Inequality (3) compares the weight of an optimal schedule S ∗ with the weight of all the jobs accepted by Algorithm A. Now, to prove the competitiveness of Algorithm A, we have to compare the weight with penalties wp (S) of jobs scheduled by Algorithm A with the weight of S ∗ . To obtain this final result, let us first compare wp (S) with the weight of T (the set of all the jobs accepted by Algorithm A), by paying now a special attention to the jobs in T that have

been canceled. Indeed, as we mentioned above these canceled jobs are not in S (the schedule constructed by Algorithm A) and lead to penalties. By using the definition of the weight with penalties and the fact that in the algorithm each set of canceled jobs σc is replaced by a new job σ such that w(σ) ≥ α · w(σc) (See definition of Algorithm A), we obtain (See Lemma 6): 1 β + 1+ wp (S) ≥ w(T) (4) α−β α−β−1 Final step: comparison between wp (S) and w(S ∗) Combining inequalities (3) and (4) lead to the final result (See Theorem 1): 1 β + (2α + 3) 1 + wp (S) ≥ w(S ∗) α−β α−β−1

4.2

1. If there is σ = [a , b [∈ Ij such that σ ∩ σ = ∅ and a < a − αp , then Z(σ) = a − αp , a + p . 2. Else, if there is σ = [a , b [∈ Ij such σ ∩ σ = ∅ that p and a − α ≤ a < a, then Z(σ) = a , a + p + αp . 3. Else Z(σ) = a, a + p + αp . Let E(σ) = {σ ∩ Z(σ) : σ ∈ Ij }. For every σ ∈ Ij , we call σ ∩ Z(σ) ∈ E(σ) the truncated interval associated to σ , where σ Z(σ) (i.e. σ = σ ∩ Z(σ)). Remark: We underline the fact that for every interval σ, we have w(Z(σ)) = p + αp = 1 + α1 w(σ) and for every interval σ ∈ E(σ), we have σ ⊆ Z(σ). Figure 1 illustrates Definition 5.

The complete proof

We now formally prove Theorem 1. In the following, for every j (1 ≤ j ≤ k), we denote by Sj (resp. Sj∗) the sub-schedule of S (resp. S ∗) of machine j. In order to prove Theorem 1, we need first the following definitions, using the standard definition of weight (we do not need right now the weight with penalties). Definition 3 (Weight of a set of intervals) The weight of a set of intervals I = {σ1 , . . . , σn } is equal to w(I) = σ∈I w(σ) (we underline the fact that two intervals of I may intersect, since I is not necessarily a valid schedule). Definition 4 (Weight of the union of intervals) The weight of the union of intervals σ = < b < a < [a1 , b1 [∪ [a2 , b2 [∪ · · · ∪ [ap , bp [(with a 1 1 2 p b2 < · · · < ap < bp) is equal to w(σ) = n=1 (bn − an). Remark: in the following, we often use the classical mathematical union. We underline the difference between {σ} and σ. Indeed, σ∈I σ∈I {σ} is a set of inter σ∈I vals, whereas σ∈I σ is an interval (a potentially discontinuous one). It means that if we consider intervals σ1 = [0, 2[, σ2 = [1, 4[, σ3 = [5, 10[and the set of intervals I = σ2 , σ3 }, we have σ∈I {σ} = { [0, 2[, [1, 4[, [5, 10[} {σ1 , and σ∈I σ = [0, 4[∪ [5, 10[. Thus, according to Definitions

4, we have : w(I) = 2 + 3 + 5 = 10 and 3 and w σ∈I σ = 4 + 5 = 9. Definition 5 (Set Ij , Zone Z(σ) and Set E(σ)) Let α > 1 be a constant. Let Γ be a job scheduled in the optimal schedule on machine j (1 ≤ j ≤ k) as interval σ = [a, b[∈ Sj∗ , and rejected of machine j by Algorithm A (we recall that w(Γ) = w(σ) = p = b − a). Let Ij be the set of (disjoint) intervals intersecting σ and scheduled on machine j when Γ has been rejected. Interval Z(σ) is the associated zone to σ and is defined in the following way:

a σ∈

σ

b

Sj∗

σ1

σ2

σ3

σ4

Ij = {σ1 , σ2 , σ3 , σ4 } intervals of machine j intersecting σ

Z(σ) a−

a+p=b

p α

 Zone Z(σ) = a −

σ1

p ,a α

σ2

 +p

σ3

σ4

Set E(σ) = {σ1 , σ2 , σ3 , σ4 } of intervals included in Z(σ) from Ij (with σ2 = σ2 , σ3 = σ3 , and σ1 , σ4 truncated)

Figure 1. Illustration of Z(σ) and set E(σ) for case 1 of Definition 5

Definition 6 (The sub-schedules Sj∗A and Sj∗B) Let Sj∗A the sub-schedule of Sj∗ (Sj∗A ⊆ Sj∗) containing the jobs scheduled in S ∗ on machine j and accepted (potentially later canceled) by A (on any machine). Let Sj∗B be the sub-schedule of Sj∗ (Sj∗B ⊆ Sj∗) containing the jobs scheduled in S ∗ on machine j and rejected by A when they have been revealed. Let us notice that Sj∗A and Sj∗B are a partition of Sj∗ .

on the right, because it can not be truncated on the left). Moreover, as σ2 ∈ E(σ) and α > 1, we have α · w(E(σ)) > w(E(σ)) ≥ w(σ2) = b2 − a2 > b − a = p = w(σ). – Otherwise, there exists an interval truncated on the right σ2 = [a2 , b2 [. Thus, we have b2 = a1 +p+ αp . As σ2 is a truncated interval and as σ2 ∩ σ = ∅, we have a2 < b = a + p and thus:

We recall that α > 1 is a constant chosen by the operator at the beginning of Algorithm A. To prove Theorem 1, we first need the following Lemmas.

w(σ2) ≥ w([a + p, a1 + p + = a1 + p +

Lemma 1 For every j (1 ≤ j ≤ k) and every σ ∈ Sj∗B , α · w(E(σ)) ≥ w(σ).

⇒

α · w(E(σ)) ≥ w(σ)

3. By Definition 5, all the remaining cases lead to Z(σ) = a, a + p + αp . As there exists a truncated interval σ2 = [a2 , b2 [∈ E(σ), we have: w(σ2) ≥

• If Ij E(σ). Three cases may happen: 1. By Definition 5, if there exists σ1 = [a1 , b1 [∈ Ij such that σ1 ∩ σ = ∅ and a1 < a − αp , then Z(σ) = a − αp , a + p . Thus, we have:

p α

(because in this case, σ2 is truncated and we have b2 = a + p + αp and σ2 ∩ σ = ∅) ⇒ α · w(E(σ)) ≥ w(σ)

p α

(because σ2 ∈ E(σ) and p = w(σ))

(with σ2 an interval truncated from σ1 and we have a2 = a − αp and σ2 ∩ σ = ∅) α · w(E(σ)) ≥ w(σ)

(because σ2 ∈ E(σ) and p = w(σ)) 2. By Definition 5, if there exists σ1 = [a1 , b1 [∈ Ij such that σ1 ∩ σ = ∅ and a − αp ≤ a1 < a, then Z(σ) = a1 , a1 + p + αp . As σ1 ∩ σ = ∅, we have: w(σ1) ≥ w([a1 , a[) = a − a1

p α

w(σ2) + w(σ1) ≥

• If Ij ⊆ E(σ), by definition of A, as Γ has been rejected from machine j, we have α · w(Ij) ≥ w(σ) ⇒ α · w(E(σ)) ≥ w(σ) (because Ij ⊆ E(σ)).

⇒

p p − a − p = a1 − a + (6) α α

As we know that we have w(E(σ)) ≥ w(σ2)+w(σ1) (because σ1 is not truncated), by summing (5) and (6), we obtain (we recall that p = w(σ)):

Proof. Let Γ be the job scheduled in the optimal schedule as interval σ = [a, b[∈ Sj∗B on machine j. As σ is in Sj∗B , Γ has been rejected by Algorithm A when it has been revealed. It means that Γ has not been scheduled on machine j. By definition of A, there exists Ij (where Ij is a set of disjoint intervals, scheduled on machine j when Γ has been rejected) such that the following property holds (otherwise, A would have scheduled job Γ on machine j):

w(σ2) ≥

p [) α

(5)

Moreover, as Ij E(σ), there exists a truncated interval and two sub-cases may happen: – If there exists a truncated interval σ2 = [a2 , b2 [coming from σ1 ∈ Ij , we have a2 = a1 and b2 > b (because σ2 is truncated

Definition 7 (The Sub-set Sj∗R minimal for inclusion) For every j (1 ≤ j ≤ k), Sj∗R is a sub-set of Sj∗B minimal for inclusion if it satisfies: Z(σ) = Z(σ) σ∈Sj∗R

σ∈Sj∗B

and ∀σ ∈ Sj∗R ,

Z(σ) =

σ∈(Sj∗R \{σ })

σ∈Sj∗B

Lemma 2 For every j (1 ≤ j ≤ k), we have: w(Sj∗B) ≤

α+1 w(Sj∗R) α

Z(σ)

Proof. w(Sj∗B)

⎛ =

w⎝

Proof. Property (a) is trivial. If the following property ∀i, 1 ≤ i ≤ n − 2, bi ≤ ai+2 holds, then property (b) holds. That is why we prove this new property in the following. Let us suppose, by contradiction, that there exists i, 1 ≤ i ≤ n − 2, such that ai+2 < bi . Let bmax = max{bi , bi+1 , bi+2 }. Three cases may happen:

⎞ σ⎠

σ∈Sj∗B

≤

(because ∀σ, σ ∈ Sj∗B ⊆ Sj∗ (σ = σ), we have σ ∩ σ = ∅) ⎛ ⎞ w⎝ Z(σ)⎠

• If bmax = bi , as ai ≤ ai+1 ≤ ai+2 , we have ai ≤ ai+2 ≤ bi+2 ≤ bi . This means that [ai+2 , bi+2 [⊆ [ai , bi [. Thus, Sj∗R is not minimal; contradiction.

σ∈Sj∗B

=

• If bmax = bi+1 , as ai ≤ ai+1 ≤ ai+2 , we have: ai ≤ ai+1 ≤ ai+2 < bi ≤ bi+2 ≤ bi+1 or ai ≤ ai+1 ≤ ai+2 ≤ bi+2 ≤ bi ≤ bi+1

(because by definition of Z(σ), w(σ) ≤ w(Z(σ))) ⎞ ⎛ Z(σ)⎠ w⎝

This means that [ai+2 , bi+2 [⊆ [ai+1 , bi+1 [. Thus, Sj∗R is not minimal; contradiction.

σ∈Sj∗R

≤

∗R (because by definition of Sj , we have σ∈Sj∗B Z(σ) = σ∈Sj∗R Z(σ)) w(Z(σ)) σ∈Sj∗R

=

1+

1 α

• If bmax = bi+2 , as ai ≤ ai+1 ≤ ai+2 , we have: ⎧ ai ≤ ai+1 ≤ bi+1 ≤ ai+2 < bi ≤ bi+2 ⎨ or ai ≤ ai+1 ≤ ai+2 ≤ bi+1 ≤ bi ≤ bi+2 ⎩ or ai ≤ ai+1 ≤ ai+2 < bi ≤ bi+1 ≤ bi+2

w(σ)

This means that [ai+1 , bi+1 [⊆ [ai , bi [∪ [ai+2 , bi+2 [. Thus, Sj∗R is not minimal; contradiction.

σ∈Sj∗R

(because by definition of Z(σ),

∀σ ∈ Sj∗B , w(Z(σ)) = 1 + α1 w(σ))

In order to prove Lemma 3, we need the following definition. Definition 8 (Intervals sorted by increasing left borders) For every j (1 ≤ j ≤ k), {[a1 , b1 [, [a2 , b2 [, . . . , [an , bn [} is the set of intervals of σ∈S ∗R {Z(σ)} sorted by increasing j left borders (i.e. such that a1 ≤ a2 ≤ · · · ≤ an). We define Pj1 ⊆ Sj∗R and Pj2 ⊆ Sj∗R the two sets of intervals satisfying: {Z(σ)} = {[a1 , b1 [, [a3 , b3 [, . . . , [a2i+1 , b2i+1 [, . . . } σ∈Pj1

(the set of “odd” zones) and {Z(σ)} = {[a2 , b2 [, [a4 , b4 [, . . . , [a2i , b2i [, . . . } σ∈Pj2

(the set of “even” zones). Lemma 3 For every j (1 ≤ j ≤ k), we have: (a) Pj1 ∪ Pj2 = Sj∗R (b) for all σa , σb in Pj1 (resp. Pj2) such that σa = σb , Z(σa) ∩ Z(σb) = ∅

In order to prove Lemma 4, we need the following definition. Definition 9 (The set of intervals Tj) For every machine j (1 ≤ j ≤ k), let Tj be the set of intervals associated to all the jobs accepted by Algorithm A on machine j, including the intervals coming from jobs scheduled and later on canceled. Lemma 4 For every j (1 ≤ j ≤ k), we have:

Proof.

(2α + 2)w(Tj) ≥ w(Sj∗B) By Lemma 1, we have α σ∈S ∗R w(E(σ)) ≥ j

w(Sj∗R). By Lemma 2, we obtain: w(E(σ)) ≥ w(Sj∗B) (α + 1)

(7)

σ∈Sj∗R

By Lemma 3, there exists Pj1 and Pj2 such that for every σa = σb in Pj1 (resp. Pj2), Z(σa) ∩ Z(σb) = ∅ and Pj1 ∪ Pj2 = Sj∗R . Thus, σ∈P 1 Z(σ) (resp. σ∈P 2 Z(σ)) is a j j set of disjoint intervals. Thus, by definition of E(σ) and Tj , we obtain: w(E(σ)) and w(Tj) ≥ w(E(σ)) w(Tj) ≥ σ∈Pj1

σ∈Pj2

By summing these two inequalities, we obtain: 2w(Tj) ≥

 σ∈Pj1

w(E(σ)) +

w(E(σ))

(8)

σ∈Pj2

Moreover, as Pj1 ∪ Pj2 = Sj∗R , we have:

w(E(σ)) +

σ∈Pj1

 σ∈Pj2

w(E(σ)) ≥

w(σ) = wp (σ) + β · w({σ : σ cancelled by σ }) (10) w(E(σ)) (9)

σ∈Sj∗R

k j=1

Thus, we obtain: wp (σ) ≥ (α − β) · w({σ : σ cancelled by σ }) (11)

By (7), (8) and (9) we obtain (2α+2)w(Tj) ≥ w(Sj∗B). Lemma 5 We have w(S ∗) ≤ (2α + 3)

Let p(σ) be the smallest integer such that fσ (p(σ)) = ∅. For every l, 1 ≤ l ≤ p(σ), for every σ ∈ fσ (l − 1), by definition of Algorithm A, we have w(σ) ≥ α · w({σ : σ cancelled by σ }). Moreover, by definition of wp (the weight with penalties β), we have:

w(Tj).

By summing this inequality for each interval in fσ (l − 1), we obtain: wp (σ) ≥ σ ∈fσ (l−1)

⎛

Proof. k • If w(S ∗) ≤ (2α + 3) j=1 w(Sj∗A). By definition of Sj∗A , ∀σa ∈ Sj∗A , ∃σb ∈ 1≤j≤k Tj such that σa and σb comes from the same job Γ (w(σa) = w(σb)). k k Thus, we have j=1 w(Sj∗A) ≤ j=1 w(Tj). Thus, k we obtain w(S ∗) ≤ (2α + 3) j=1 w(Tj). k • If w(S ∗) ≥ (2α + 3) j=1 w(Sj∗A). By definition of Sj∗A and Sj∗B , we have Sj∗A ∩ Sj∗B = ∅ and Sj∗A ∪ Sj∗B = Sj∗ . Thus, we have: k w(Sj∗A) + j=1 w(Sj∗B) ∗ k) ∗B w(S ∗) ≤ w(S j=1 w(Sj) 2α+3 + k 1 ∗B 1 − 2α+3 w(S ∗) ≤ j=1 w(Sj) k ∗B w(S ∗) ≤ 2α+3 j=1 w(Sj) 2α+2 k w(S ∗) ≤ (2α + 3) j=1 w(Tj) (by Lemma 4)

w(S ∗) = ⇒ ⇒ ⇒ ⇒

k

(α − β) · w ⎝

⎞ {σ : σ cancelled by σ }⎠

σ ∈fσ (l−1)

⇒

wp (σ) ≥ (α − β) · w(fσ (l))

σ ∈fσ (l−1)

wp (fσ (l − 1)) ≥ (α − β) · w(fσ (l)) (by definition of fσ (l))

⇒

By summing all these inequalities for l, 1 ≤ l ≤ p(σ), we obtain:

p(σ)−1

j=1

p(σ)

wp (fσ (l)) ≥ (α − β)

l=0

w(fσ (l))

l=1

p(σ)

⇒

wp (σ) +

p(σ)

wp (fσ (l)) ≥ (α − β)

l=1

w(fσ (l))

l=1

(because fσ (0) = {σ})

p(σ)

⇒

w(fσ (l))

l=1

 Let us recall that wp is the notation used for the weight with penalties (see Definition 1).

wp (σ) ≥ (α − β − 1)

(because ∀σ , w(σ) ≥ wp (σ)) ⇒

p(σ) wp (σ) + w(σ) ≥ w(fσ (l)) α−β−1 l=0

Lemma 6 For every j (1 ≤ j ≤ k), we have: 1 β + 1+ wp (Sj) ≥ w(Tj) α−β α−β−1

⇒

• fσ (l) =

 σ ∈fσ (l−1) {σ : σ cancelled by σ }

p(σ)

≥

Proof. For every σ ∈ Sj , for every l ≥ 0, we recursively define the set of intervals fσ (l) ⊆ Tj in the following way: • fσ (0) = {σ}

(because fσ (0) = {σ}) wp (σ) σ : σ can+ wp (σ) + β · w -celled by σ α−β−1 w(fσ (l))

(by (10))

l=0

⇒

p(σ) wp (σ) wp (σ) + wp (σ) + β · ≥ w(fσ (l)) α−β−1 α−β l=0

(by (11))

References

By summing this inequality for each interval in Sj , and as Tj = σ∈Sj 0≤l≤p(σ) fσ (l) , we obtain: 1+

1 β + α−β α−β−1

≥ ⇒

wp (σ)

σ∈Sj

 p(σ)

w(fσ (l))

σ∈Sj l=0

β 1 1+ + α−β α−β−1

wp (Sj) ≥ w(Tj)

We are now able to prove Theorem 1. Proof of Theorem 1. k (2α + 3) j=1 w(Tj) ≥ w(S ∗) (by Lemma 5) k β 1 wp (Sj) + α−β−1 ⇒ (2α + 3) j=1 1 + α−β ≥ w(S ∗)

⇒

5

(2α + 3) 1 +

β α−β

+

1 α−β−1

(by Lemma 6) wp (S) ≥ w(S ∗)

Conclusion and perspectives

In this paper we studied a scheduling model including many features: the jobs are revealed online, the system is composed of many machines and the scheduler is subject to penalties when he cancels jobs. Despite these difficulties, we adapted a natural algorithm and proved that it has a constant competitive ratio. Moreover, by tuning the penalty factor β, one can balance the ”relative power” between the clients and the operator/scheduler. The proof of the competitiveness of the algorithm was done by comparing the constructed schedule and the optimal one. The ratio we obtained is probably not tight. However, establishing lower bounds for a competitive ratio in a system with more than one machine is a very hard task (we do not know such results for our weight model, even if we do not consider penalties). Moreover, we suppose that improving the ratio can probably only be done with others proof techniques. A last perspective would be to consider more general weight functions. Note that our model (weight equal to p) is equivalent (i.e. with the same algorithm and competitive ratio) to models with weights equal to τ p (with τ a constant). An interesting generalization would be to obtain similar results with a class of functions of p as large as possible.

[1] R. Adler and Y. Azar. Beating the logarithmic lower bound: Randomized preemptive disjoint paths and call control algorithms. J. of Scheduling, 6(2):113–129, 2003. [2] F. Baille, E. Bampis, C. Laforest, and N. Thibault. On-line bicriteria interval scheduling. In Euro-Par, pages 312 – 323. Springer, LNCS 3648, 2005. [3] F. Baille, E. Bampis, C. Laforest, and N. Thibault. On-line simultaneous maximization of the size and the weight for degradable intervals schedules. In COCOON, pages 308– 317. Springer, LNCS 3595, 2005. [4] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber. Bandwidth allocation with preemption. SIAM J. Comput., 28(5):1806–1828, 1999. [5] A. Bar-Noy, G. S., N. J., and S. B. Approximating the throughput of multiple machines in real-time scheduling. SIAM J. Comput., 31:331–352, 2001. [6] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University press, 1998. [7] U. Faigle and W. Nawijn. Note on scheduling intervals online. Discrete Applied Mathematics, 58(58):13–17, 1994. [8] S. Fung. Lower bounds on online deadline scheduling with preemption penalties. Information Processing Letters, (Available online 31 May 2008), 2008. [9] J. Garay, I. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line call control algorithms. J. of Algorithms, 23(1):180–194, 1997. [10] J. Garay, J. Naor, B. Yener, and P. Zhao. On-line admission control and packet scheduling with interleaving. In Proceedings of INFOCOM, pages 94–103, 2002. [11] S. Goldman, J. Parwatikar, and S. Suri. On-line scheduling with hard deadlines. In WADS: 5th Workshop on Algorithms and Data Structures, pages 258–271, 1997. [12] M. Goldwasser. Patience is a virtue: the effect of slack on competitiveness for admission control. In 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 396– 405, 1999. [13] R. Lipton and A. Tomkins. Online interval scheduling. In 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1806–1828, 1994. [14] J. Naor, A. Rosen, and G. Scalosub. Online time-constrained scheduling in linear networks. In Proceedings of INFOCOM, volume 2, pages 855–865, 2005. [15] N. Thibault and C. Laforest. On-line time-constrained scheduling problem for the size on k machines. In I-SPAN, pages 20 – 24, 2005. [16] G. Woeginger. On-line scheduling of jobs with fixed start and end times. Theoretical Computer Science, 130(130):5– 16, 1994. [17] F. Zheng, Y. Xu, and E. Zhang. On-line production order scheduling with preemption penalties. Journal of Combinatorial Optimization, 13(2):189–204, 2007.

des documents recommandant

[image: alt]

On a resource-constrained scheduling problem with application to

Dec 13, 2006 - We then present a branch-and-bound algorithm for the general case along ... European Journal of Operational Research 183 (2007) 546â€“563.

[image: alt]

Time domain constrained Hâˆž-synthesis

So the idea matures to combine these two seemingly separate worlds. This is SQP methods, like local minima of constraint violation, or insignificant progress.

[image: alt]

Time constrained VRP: an agent environment

Vehicle routing problems (VRP) have been an intensive research area works will consider variants of the VRPTW such that the Pickup and. Delivery Problem ...

[image: alt]

A GRASP for a resource-constrained scheduling problem Renaud

Applications, Vol. 2, No ... de Techniques AvancÃ©es (Paris) as well as operations research at UTC. ... for using the GRASP paradigm to design such an algorithm.

[image: alt]

CONSTRAINED TIME-LAPSE RESISTIVITY IMAGING INVERSION

smoothness-constrained least-squares method that is used for normal land ... must be accurately known since a large proportion of the current flows through the ... areas. In the first situation, the entire survey line is underwater. This is typical o

[image: alt]

Time constrained VRP: an agent environment

2 Our proposal. 2.1 Multi-Agent ... Definition 1 (Environment) ENV = ã€ˆA,E,Y,Mã€‰ with: ... by (x, y, e, l, s, q), with (x, y) its cartesian coordinates, [e, l] its time window ...

[image: alt]

Approximate solution of a resource-constrained scheduling problem

Springer Science+Business Media, LLC 2007. Abstract This paper is ... rithm for the Process Move Programming (PMP) problem. This problem ... An admissible state for the system is defined as a mapping f : P âˆ’â†’ U âˆª {uâˆž}, where uâˆž is a ...

[image: alt]

A LNS method for solving the resource-constrained project scheduling

to solve the Resource-Constrained Project Scheduling Problem (RCPSP) by ... and any activity i verifying Si â‰¤ Sx + px and Si + pi â‰¥ Sx is included in V s.

[image: alt]

Track Penalties

for not holding his/her line during the final sprint pour avoir quitté sa ligne pendant le track after passing the finish line for folding or mutilating the race number.

[image: alt]

Track Penalties

EVOLUCION DE LOS CORREDORES EN PISTA for not holding his/her line during the final sprint pour avoir quitté sa ligne pendant le sprint final por desviarse ...

[image: alt]

Nested Sampling with Constrained Hamiltonian Monte Carlo

While Bayes' Theorem is simple enough to formulate, in practice the Hamiltonian dynamics, in particular Liouville's Theorem and conservation of H, guar-.

[image: alt]

Synchronous Interface Theories and Time Triggered Scheduling

of interface theories [15,20] were developed to tackle this problem. While those ... In [2], simple job-shop scheduling problems are solved using timed 17. de Alfaro, L., Faella, M.: An Accelerated Algorithm for 3-Color Parity Games with.

[image: alt]

Track Penalties

pour vêtement/publicité non conforme lors de la cérémonie protocolaire for improper ... pour publicité non conforme sur le maillot / cuissard / équipement.

[image: alt]

Scheduling Loops with Partial Loop-Carried ... - OpenLSD

LC = Completed task list. Pp = Partial ... list LC of completed tasks as well as to the local scheduling list Pp. Once all of 109â€“116, New York, July 13â€“17 1998.

[image: alt]

Scheduling Associative Reductions with Homogeneous Costs when

All the transfers are characterized by a rooted tree, called spanning [16] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoed- jang, â€œMPI's ...

[image: alt]

On Wireless Network Scheduling with ... - Princeton University

coding, imperfect scheduling, cross-layer optimization, congestion control. I. INTRODUCTION multi-PICC network coding leads to the capacity constraint. (4).

[image: alt]

Real time scheduling of batch systems - Page d'accueil de Robert

look to a certain extent like flexible manufacturing systems [15]. As a matter of fact, In batch systems, it will be in practice impossible to know the ... better solutions. Indeed, it is not always a good strategy to fire transitions as soon as

[image: alt]

Approximation algorithms for no-idle time scheduling on a

Theorem 2 Algorithm NI-P has a tight worst-case performance ratio of 3. 2 [16] Potts CN (1980) Analysis of a heuristic for one machine sequencing.

[image: alt]

Finding Time Quantum of Round Robin CPU Scheduling Algorithm in

IJRRAS 5 (1) â—‹ October 2010. Mostafa & al. â—‹ Finding Time Quantum of Round Robin CPU Scheduling. 65 set up so they can be run to completion without ...

[image: alt]

Online Scheduling of Task Graphs on Hybrid Platforms

Thus, dynamic runtime schedulers are often preferred to static ones, as they are with the offline case where the whole scheduling problem (both task ... We use buckets to book some processors for an amount of time, and sched- ule a set of ...

[image: alt]

A Power-Aware Online Scheduling Algorithm for ... - Nicolas Ventroux

in embedded system design lies in the conception of MultiProcessor Systems-on- ... put is to pipeline sequential applications into streaming ones. This applies to ... scheduling algorithm in terms of Quality of Service (QoS) and power consump-.

[image: alt]

Labelling Multi-tape Automata with Constrained ... - AndrÃ© Kempe

model generalizes classical multi-tape automata, as well as automata and ... A n-ary relation is rational if it can be obtained by combining atomic relations,.

[image: alt]

Real-time scheduling of independent tasks - Mathieu Delalandre's

Introduction to hybrid task sets scheduling. 4.2. Hybrid ... Design for peak load. +. ++ ... optimal not optimal relative deadline strict deadline. Processus model.

[image: alt]

Scheduling schools

Optimization phase, when LC = 0. â€¢ Prior is set of valid schedules. â€¢ begins here at Cool = 10.7. â€¢ continue optimizing until tired. Two phases in the computation ...

×
Report Online time constrained scheduling with penalties

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

