Objective and subjective study of trumpets - GSAM

Setting up of the sensory profiling (attributes). Subjective study brainstorming. Free-verbalisation task on instruments of various quality. Attribute. Definition.
493KB taille 25 téléchargements 450 vues
Objective and subjective study of trumpets Jean-François PETIOT IRCCyN (UMR CNRS) : Ecole Centrale de Nantes, France

et al. Emilie POIRSON Joël GILBERT UK Musical Acoustics Network Conference September 21st, 2006

1

Outline ‹

Context and background •

‹

The trumpet’s leadpipe

Methodology Subjective study • Objective study • Data analysis - Correlations • Design of a leadpipe - Optimization •

‹

Conclusions - Perspectives

21st september, 2006

J-F PETIOT

2

‹

General context

[Pratt and Bowsher]

• Study of the perceived quality of brass instruments

Physical measurements (e.g. impedance)

Perceived quality

Ze (jω ) =

Amplitude (dB)

10

10

10

d'entrée Pe (jωImpédance ) Pe (jωZe ) Ze (jω ) = Ue (jω ) Ue (jω )

BACH IFJN

8

7

6

0

200

400

600

800

1000

1200

1400

Fréquence (Hz)

Quality : aptitude of a product to satisfy the user’s needs, explicit or implicit [NF]. musical

acoustical

financial

aesthetical ergonomical

The « ideal » instrument does’nt exist. Only compromises between differents dimensions of the perceived quality can be made 21st september, 2006

J-F PETIOT

3

Research objectives •

Study the influence of the bore’s geometry of brass instruments on the perceived quality - Focus on the “intonation”



“optimise” the design of an instrument according to a given dimension of the perceived quality (target)

Experimental approach • “Parameterized” instrument •

Control the “variability” of the instrument

• Panel of musicians “experts ” • control the subjective response (reliability)

21st september, 2006

J-F PETIOT

4

‹

The trumpet leadpipe bell mouthpiece

Resonator

leadpipe

The inner shape of the leadpipe has a great influence on the sound quality of the trumpet (intonation, timbre, response,…) 21st september, 2006

J-F PETIOT

5

Methodology [PhD Poirson] Product space

Objective study

Subjective study Panel of Experts

Sensory analysis

Objective measurement

Sensory profiling

Objective variables

Acoustics

Correlations data analysis

Design Optimisation

21st september, 2006

J-F PETIOT

6

Setting-up of the product space Parameterized trumpet leadpipe (r2, r3, r4) Part 2

Part 1 r1

r2

r3

Tuning slide

r4

Several hundred of possible instruments

Manufacturing with NC machine [ECN]

21st september, 2006

Part 4

Part 3

J-F PETIOT

7

Shapes of the parameterized parts Codage des pièces constituives des branches

A B C D E

Diamètre Entrée d1 9,28 9,28 9,28 9,28 9,28

Diamètre Sortie d2 9,28 9,4 10 10,9 11,65

F

9,4

11

1

G H I

10 10 10

10,1 11 11,4

1 1 1

J

10,1

11,4

1

K

10,9

11

1

L M N O

11 11 11 11

11 11,4 11,65 12

1 1 1 1

P Q

11,4 11,4

11,4 11,65

1 1

R

11,65

11,65

3

S

12

11,65

1

Code

Several hundred of combinations

21st september, 2006

J-F PETIOT

Qté 3 1 1 1 1

8

Example of inner shapes

AAAE

DKOS

8

8

6

6

4

4

2

2 0

0 -2 0

50

100

150

200

250

-2 0

-4

-4

-6

-6

-8

-8

50

100

200

150

200

250

CHMQ

IFJN 8

8

6

6

4

4

2

2 0

0 -2 0

150

50

100

150

200

250

-2 0

-4

-4

-6

-6

-8

-8

21st september, 2006

J-F PETIOT

50

100

250

9

Subjective study How to be sure that the assessment of the musician is reliable ? ⇒ Sensory analysis • Definition of sensory attributes • Training of a panel of experts • Statistical study of the significativity of the results

21st september, 2006

J-F PETIOT

10

Subjective study ‹ panel of experts • 10 professional musicians • Setting up of the sensory profiling (attributes)

brainstorming Free-verbalisation task on instruments of various quality Attribute Intonation

Definition Relative position of the notes Difference of height note E (fingering Test note E 0) and note E (fingering 12) Ability of the instrument to be centered Centering on a note Ability of the instrument to play Response immediately Width of the Dynamic range Low register Medium register Width of the Dynamic range Width of the Dynamic range High register Tone of the instrument Timbre

Range out of tune / in tune

Procedure arpeggio

similar / different

play notes E(0)-E(12)

bad / good

attack of the note G4

bad / good

Detached notes

limited/ big limited/ big limited/ big dark / bright

dynamics pp, mf, ff dynamics pp, mf, ff dynamics pp, mf, ff comparison/reference

attribute : relevant, accurate, discriminating, independent 21st september, 2006

J-F PETIOT

11

Training sessions • « blind » tests • task: • 4 different leadpipes, in 3 replications • Same trumpet (Bach Vernon)

• evaluation of the repetability, the ability to

perceive differences, of the experts • one-way and two-ways ANOVA (product effect ;

product/subject/interaction effects)

Sensory profile

21st september, 2006

J-F PETIOT

12

example of results Typical assessement chart of an expert (training) Intonation

Branches AAAE

DKOS

IFJN

CHMQ

Val. 3,1 3 3 6 8,7 6,3 9,2 6,2 5,9 8,2 8,8 8,2

average

test E(0) et E(12) Rg

3,033

4

7,000

3

7,100

2

8,400

1

Val. 2,5 5,4 5,9 4,2 7,4 9 8,4 5,8 6,2 8,3 8,5 7

average

Rg

4,600

4

6,867

2

6,800

3

7,933

1

Val. 4,2 6 7,2 4 7,4 7,8 7,5 6,6 7,8 7,6 8 6,7

average

Rg

5,800

4

6,400

3

7,300

2

7,433

1

Val. 6,2 6,2 6,2 5,4 7,6 7,2 7,6 6,3 7,2 8,1 8,2 7,5

average

Rg

6,200

4

6,733

3

7,033

2

7,933

1

« bad » repeatability

Good repeatability 21st september, 2006

Response

Centering

J-F PETIOT

13

Repeatability/discriminating Good repeatability, but not discriminating

Poor repeatability, but discriminating

Instrument A 21st september, 2006

Instrument B J-F PETIOT

14

Two-ways ANOVA (product- expert) Example of results: training session

Intonation Test E Centering Response

=significant effect

Low

Medium

High

Timbre

Product effect Expert effect Interaction

No effect of the leadpipe Pb of repeatability « Interaction » effect « expert » effect

21st september, 2006

J-F PETIOT

15

Evaluation session • 12 instruments, 2 replications

Assessment of the intonation fingering (0)

21st september, 2006

Average intonation scores

J-F PETIOT

Subjective score of Code intonation I 7.2 ABFN 8.8 ACHN 9.5 ADKN 8.9 BFLN 8.6 BFOS 8.2 CGJQ 7.5 CHMQ 6.6 CHNR 6.1 CIPQ 7.7 DKLN 5.1 DKNR 6.9 DKOS

16

Objective study Measurement of the input impedance Zin [BIAS – ITEMM, Le Mans] pin(t) uin(t)

Zin (jω) =

Pin (jω) Uin (jω)

Pe (jωInput ) impedance Pe (Zin jω ) Ze (jω )= Ze (jω )= Ue (jω ) Ue (jω ) Amplitude Zin (dB)

10

10

10

BACH IFJN

8

7

6

0

200

400

600

800

1000

1200

1400

Frequency (Hz) 21st september, 2006

J-F PETIOT

17

Objective variables extracted from Zin Resonance frequencies of the impedance Zin

resonance frequencies of Zin (Hz) Code ABFN ACHN ADKN BFLN BFOS CGJQ CHMQ CHNR CIPQ DKLN DKNR DKOS

f2

f3

f4

f5

f6

f7

f8

f9

f10

230.5 230 229.5 229.5 229 229.5 228.5 229 228.5 227.5 227.5 228

343.5 344.5 345.5 346 347 345.5 346 347.5 346.5 344.5 345.5 346.5

454.5 457 460 460.5 463 460 463 465 464.5 463.5 465 465.5

574 575.5 576.5 577.5 575 577.5 579 580.5 581 582.5 581.5 581.5

691 690 687.5 687.5 685 690 687.5 689 687 690 688.5 688.5

801.5 801 796.5 796.5 799.5 799 796 798.5 796 791.5 794 795.5

901.5 904.5 906 907 908.5 903 905 908 907 901.5 902 903.5

1019 1022 1024 1025.5 1021.5 1021 1023 1025.5 1025.5 1025.5 1022.5 1022.5

1144 1144 1143 1144 1140 1145 1144 1147.5 1146.5 1150 1146.5 1146.5

21st september, 2006

J-F PETIOT

18

Link between the subjective/objective data

subjective study

objective study

Intonation scores

Objective variables

?

Subjective score of Code intonation I 7.2 ABFN 8.8 ACHN 9.5 ADKN 8.9 BFLN 8.6 BFOS 8.2 CGJQ 7.5 CHMQ 6.6 CHNR 6.1 CIPQ 7.7 DKLN 5.1 DKNR 6.9 DKOS

resonance frequencies of Zin (Hz) Code ABFN ACHN ADKN BFLN BFOS CGJQ CHMQ CHNR CIPQ DKLN DKNR DKOS

f2

f3

f4

f5

f6

f7

f8

f9

f10

230.5 230 229.5 229.5 229 229.5 228.5 229 228.5 227.5 227.5 228

343.5 344.5 345.5 346 347 345.5 346 347.5 346.5 344.5 345.5 346.5

454.5 457 460 460.5 463 460 463 465 464.5 463.5 465 465.5

574 575.5 576.5 577.5 575 577.5 579 580.5 581 582.5 581.5 581.5

691 690 687.5 687.5 685 690 687.5 689 687 690 688.5 688.5

801.5 801 796.5 796.5 799.5 799 796 798.5 796 791.5 794 795.5

901.5 904.5 906 907 908.5 903 905 908 907 901.5 902 903.5

1019 1022 1024 1025.5 1021.5 1021 1023 1025.5 1025.5 1025.5 1022.5 1022.5

1144 1144 1143 1144 1140 1145 1144 1147.5 1146.5 1150 1146.5 1146.5

⇒ propose assumptions to interpret the intonation scores by objective variables 21st september, 2006

J-F PETIOT

19

Assumption 1

the intonation is mainly conditioned by the following frequency ratio

relation musical intervals / frequency ratio

f3 / f2

: fifth

f4 / f2

: octave

f5/ f4

: third

f6 / f4 f8/ f4

: fifth : octave

5 explanatory variables 21st september, 2006

J-F PETIOT

20

Principal component analysis ‹

The five explanatory variables are correlated ⇒ Reduction of the dimensionality by Principal

Component Analysis (PCA) Factors

Variables

F1

f3/f2 f4/f2 f5/f4 f6/f4 f8/f4 1,49 1,97 1,26 1,52 1,98

1,22

-0,19

ACHN

0,80

-0,09

ADKN

0,23

0,06

BFLN

0,18

0,02

BFOS

-0,47

0,46

CGJQ

0,28

-0,11

CHMQ

-0,30

0,00

1,5

ADKN

1,51

BFLN

1,51 2,01 1,25 1,49 1,97

BFOS

1,52 2,02 1,24 1,48 1,96

CGJQ

1,51

CHMQ

1,51 2,03 1,25 1,48 1,95

CHNR

1,52 2,03 1,25 1,48 1,95

CHNR

-0,47

0,06

CIPQ

1,52 2,03 1,25 1,48 1,95

CIPQ

-0,45

-0,03

DKLN

1,51 2,04 1,26 1,49 1,94

DKLN

-0,27

-0,39

DKNR

1,52 2,04 1,25 1,48 1,94

DKNR

-0,62

-0,18

DKOS

1,52 2,04 1,25 1,48 1,94

DKOS

-0,66

-0,10

21st september, 2006

1,99 1,26 1,51 1,98

ABFN

ACHN

2

2

1,25 1,49 1,97

1,26

1,5

1,96

J-F PETIOT

PCA Trumpets

Trumpets

ABFN

F2

21

Factorial plane (F1 F2) ⇒ 98% of variance on the factorial plane (F1, F2)

0.8 0.6

f8/f4

F2 – inertia : 14%

BFOS

0

f3/f2 f4/f2

CHNR CIPQ CHMQ DKOS DKNR

ADKN BFLN CGJQ

ACHN f6/f4

ABFN

DKLN

f5/f4 -0.8 F1 – inertia : 84% -1

21st september, 2006

-0.5

J-F PETIOT

0

0.5

1

22

Assumption 2

linear model between the intonation score Ii and the factors F1 F2

Ii = a.F1i + b.F2i + c.(F1i2 + F2i2) + d



Ideal point model (extremum of the paraboloid)

calculation of the coefficients a, b, c, d by least square method (regularized regression) - Significant regression (F-test) - Determination coeff.

R2

= 0.7



Assumptions are relevant

• determination of the coordinates of the « ideal » point -a/2c « Maximum » of intonation « ideal » -b/2c 21st september, 2006

J-F PETIOT

23

Results ‹

Position of the “ideal” point (target)

0.8 Target 0.6

f8/f4

F2 – inertia : 14%

BFOS

0 f3/f2 f4/f2

CHNR CIPQ CHMQ DKOS DKNR

ADKN BFLN CGJQ

ACHN f6/f4

ABFN

DKLN

f5/f4 -0.8 F1 – inertia : 84% -1 21st september, 2006

-0.5 J-F PETIOT

0

0.5

1 24

Calculation of the initial variables of the “target” ⇒ Inversion of the coordinate transformation relations of

the PCA

F = X.U

F: matrix (n×p) of the factorial scores X: matrix (n×p) of the initial data U: matrix (p×p) of the eigen vectors Solution

Target

21st september, 2006

ft3/ ft2

ft4/ ft2

ft5/ ft4

ft6/ ft4

ft8/ ft4

1,52

2,03

1,24

1,49

1,98

J-F PETIOT

25

Optimisation ⇒ Design of the leadpipe corresponding to the “target” by

optimisation method ‹

Multicriteria optimization problem ⎧ e1 = f3 − ft3 f2 ft 2 ⎪ ⎪ e2 = f6 − ft 6 f4 ft 4 minimize ⎪⎪ ⎨ e3 = f4f2 − ft 4 ft 2 x = [r2, r3, r4 ]⎪ f8 ft8 ⎪ e4 = f4 − ft 4 ⎪ e5 = f5 − ft5 ⎪⎩ f4 ft 4 Part 2

Part 1 r1

21st september, 2006

r2

Design variables : r2, r3, r4 of the leadpipe

Part 4

Part 3 r3

J-F PETIOT

Tuning slide

r4

26

Results ⇒ Selection of 5 solutions of the PARETO set (not-

dominated)

S1 S2 S3 S4 S5 DKOS

r2 (mm) 4.3 4.6 4.6 4.6 4.6 5.5

r3 (mm) 5.4 5.3 5.3 5.4 5.5 5.5

r4 (mm) 6 5.9 6 5.7 5.8 6

Si dominates Sj if Si is better than Sj on all the objectives and strictly better on at least one objective

Coming soon … ⇒ Manufacturing of an “optimal” leadpipe and test with

the experts ⇒ Exploitations of the results for other attributes 21st september, 2006

J-F PETIOT

27

Conclusions ‹

Illustration of a user-centered methodology for the design of brass instruments

‹

Application to the sensory profiling technique to the assessment of musical instruments •

The sensory profiling technique is relevant for certain attributes



Importance of the training of the experts



Difficult to have an homogeneous panel for some attributes (response, centering)

‹

Implementation of optimisation method to solve a design problem

Perspectives ‹

Taken into account users’ preferences

21st september, 2006

J-F PETIOT

28

Reference ‹

J-F. Petiot, E. Poirson, J. Gilbert. « User-centred design via sensory analysis techniques and optimisation procedures: application to musical instrument design ». proceedings of ICED 2005, International Conference on Engineering Design, August 15-18, 2005, Melbourne, Australia.

Thanks to … ‹ ‹

‹

‹

Philippe COURCOUX, professor, ENITIAA Nantes, Our 10 Experts : J-C.BAULIN, Ch.BELZ, L.BOILLEREAUX, P.BOSSEAU, Ph.CORCUFF, S.GRIMAULT, J-J.METZ, Y.NEVEU, P.PINEAU, S.SCOUBART, Jacques GEFFRIAUD and Patrick BARON, École Centrale de Nantes, Brasswind & Woodwind (C. CHAUVIN).

21st september, 2006

J-F PETIOT

29

Objective and subjective study of trumpets Jean-François PETIOT IRCCyN (UMR CNRS) : Ecole Centrale de Nantes, France

UK Musical Acoustics Network Conference September 21st, 2006

30