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Numerical Predictions of Channel Flows with Fluid Injection Using Reynolds-Stress Model Bruno Chaouat¤ ONERA, 92322 Chˆatillon, France Numerical predictions of channel � ows with � uid injection through a porous wall are performed by solving the time-dependent Navier– Stokes equations using a Reynolds-stress turbulent model. In� uence of the turbulence injected � uid is investigated. Numerical results with experimental data indicate that the � ows evolve signiŽ cantly vs the distance from the front wall such that different regimes of � ow development can be observed. In the Ž rst regime the velocity Ž eld is developed in accordance with the laminar theory. The second regime is characterized by the development of turbulence, which occurs at different locations in the channel because of the presence of impermeable and permeable walls, and by the transition process of the mean axial velocity when a critical turbulence threshold is attained. Computed results are compared with existing experimental data including axial mean velocity proŽ les and full turbulent stresses. As a result for the simulations, the Reynolds-stress model predicts the mean velocity proŽ les, the transition process, and the turbulent stresses, in good agreement with experimental data.
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� atness anisotropy parameter, 1 ¡ 98 . A2 ¡ A 3 / second invariant, ai j a ji third invariant, ai j a jk aki Reynolds-stress anisotropy, .¿i j ¡ 23 k±i j /= k friction coefŽ cient, 2.u ¿ =u m /2 speciŽ c heat at constant pressure, J/(kg ¢ K) total speciŽ c energy, m2 /s2 , J/kg total speciŽ c enthalpy, h C u i u i =2, m2 /s2 speciŽ c enthalpy, m2 /s2 tensor of diffusion for the Reynolds stress ¿i j speciŽ c turbulent kinetic energy, ¿ii =2, m2 /s2 channel length, m Mach number injection mass � ux, kg/(m2 ¢ s) normal to the wall production rate of ¿i j caused by mean shear turbulent Prandtl number static pressure, Pa total heat � ux vector, W/m2 injection Reynolds number, ½s u s ±=¹s turbulent Reynolds number k 2 =º² universal gas constant strain-rate tensor speciŽ c entropy, J/(kg ¢ K) temperature, K 00 00 Q ½N u] N ½N uQ i ; ½N E; N vector of conservative variables ½; i u j ; ½² velocity vector, m/s bulk velocity, m/s injection velocity, m/s friction velocity, m/s Cartesian coordinate, m dimensionless distance from walls, xi u ¿ =º coefŽ cient for planar or axisymmetric geometry
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ratio of speciŽ c heats channel height, m Kronecker tensor dissipation rate, m2 /s3 permutation tensor thermal conductivity, W/(m ¢ K) dynamic viscosity, kg/(m ¢ s) kinematic viscosity, m/s2 density, kg/m3 total stress tensor viscous stress tensor 00 00 2 1=2 surface-generatedpseudoturbulence,. u] 2 u 2 =u s / 00 00 u turbulent stress tensor, u] i j pressure-strain � uctuations, p0 Si00j vorticity tensor, ²i jk @u k =@ x j , (1/s)
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= bulk mean quantity = condition at injection surface = wall
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Reynolds averaged of variable Favre averaged of variable Reynolds turbulent � uctuating value of variable Favre turbulent � uctuating value of variable



Introduction



LOWS through porous ducts with wall injection are encountered in many engineering applications such as transpiration cooling, boundary-layer control, and the combustion induced � owŽ eld in solid-propellantrocket motors (SRM). For SRM applications1 the � ow plays an importantrole in ballisticsprediction, which is affected by the transition behavior of the mean axial velocity and by turbulence quantities. The � ow in the chamber of a solid rocket motor can be modeled by a duct � ow with appreciable � uid injection through permeable walls. This type of � ow evolves signiŽ cantly with respect to the distance from the front wall. Different
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� ow regimes can be observed depending on the injection Reynolds number Rs D ½s u s ±=¹s , deŽ ned with the injectiondensity ½s , the velocity u s , the dynamic viscosity ¹s at the porous surface, and with the radius of a cylindrical duct or the half-height of a planar channel ±. In the Ž rst regime the velocity Ž eld is developedin accordance with the laminar theory. The second � ow regime is characterizedby the development of turbulence and by the transition process of the mean axial velocity when a critical turbulence threshold is attained. For the Ž rst regime where the � ow is mainly governed by the � uid injection, Taylor,2 Culick,3 and Yamada et al.4 have analytically determined the velocity proŽ les
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in a frame of reference where x 1 and x 2 are respectively the distances along the streamwise and normal directions and ® D 0 or 1 for planar or axisymmetric � ows. Equation (1) shows that the axial velocity increases linearly with the axial distance and satisŽ es the no-slip condition of the Navier– Stokes equations because u 1 .±/ D u 1 .¡±/ D 0. Because of the progress in computing power, channel � ows with � uid injection through porous walls have been studied numerically by several authors. Varapaev and Yagodkin5 and Casalis et al.6 investigated the viscous stability of the � ow in a channel. Relative to the stability of uninjected channel � ow, their results showed that the neutral stability of the � ow occured at a lower axial-� ow Reynolds number for low values of injection Reynolds number and that the axial-� ow Reynolds number at the neutral stability increased linearly for large values of injection Reynolds number. Sviridenkov and Yagodkin7 assumed the � ow to be incompressible and solved the time-average Navier– Stokes equations using k – ² and k – ! turbulence models. Their results provided different predictions of the transition process and overpredicted turbulencelevels by about 300 and 200% in the posttransition of the � ow. Beddini8 solved a parabolic differential equations system using a turbulence model developed by Donalson.9 This model is based on transport equations of the Reynolds stresses with an algebraic relation for the turbulence macro-length scale. The calculations overpredicted the experimental data of Yamada et al.4 by about 200%, but a reasonable agreement with the data of Dunlap et al.10 was obtained by generating pseudoturbulence at the porous surface. Sabnis et al.11 applied the k – ² model for simulating the � owŽ eld measured by Dunlap et al.10 As for the previous simulations, the turbulence intensity was overpredicted by about 200%. Then, Sabnis et al.12 attempted to predict the � owŽ eld in the nozzleless solid rocket motor investigated experimentally by Traineau et al.13 They empirically modiŽ ed the damping functions of the k – ² model at low Reynolds number in order to obtain more accurate results. Chaouat14 also investigated this � ow13 by means of k – ² turbulence model by setting the damping functions equal to unity yet discrepancies remained regarding the turbulence intensity. Liou and Lien15 decided to solve the two-dimensional Navier– Stokes equations directly without turbulence model. Although the mesh resolution did not permit a direct numerical simulation of the internal � owŽ eld, they indicated turbulence intensity proŽ les in good agreement with experimental data.13 Recently, they have extended their previous simulation by solving the two-dimensional Navier– Stokes equations with a subgrid scale turbulence model.16 The results of their simulations seem to demonstrate that large eddy structures play an important role in the � ow. More recently, Apte and Yang17 have solved the three-dimensionalNavier– Stokes equations using a compressible version of a dynamic Smagorinsky model for simulating this � ow.13 The vortex-stretching and rolling mechanisms of the � ow were well reproduced.As expected, these authors have mentioned that large eddy simulation must be three-dimensional for predicting fairly well the Reynolds stress intensity.



Fig. 1



Schematic of VECLA facility.



A recent speciŽ c experimentalsetup has been realized at ONERA for investigating the characterictics of injection driven � ows. The experimental setup is sketched in Fig. 1. The planar experimental facility is composed of a parallelepiped channel bounded by a porous plate and impermeable walls. The value of the duct length is L D 58:1 cm. The channel height is 1.03 cm, and the width is 6 cm. Cold air at 303 K is injected with a uniform mass � ow rate m D 2:619 kg/m2 s throughporous material of porosities,8 or 18 ¹m. The injection velocities are Ž xed by the local pressure in the channel. The pressure at the head end of the channel is 1.5 bar. In the exit section the pressure is 1.374 bar in accordance with the operating of the experimental setup. From the deŽ nition of the injection Reynolds number already mentioned, ± corresponds to the height of the channel caused by the nonsymmetry of the setup. Taking into account these parameters, the value of the injection Reynolds number is approximately 1600. Because of the mass conservation, the � ow Reynolds number Rm D ½m u m ±=¹m based on the bulk density ½m and the bulk velocity u m varies linearly vs the axial distance of the channel.It ranges from zero to approximatelythe value 9 £ 104 . Experiments in three-dimensional geometry have been carried out at ONERA by Avalon et al.18 The mean velocity proŽ les and the Reynolds-stress turbulent intensities have been measured with a hot-wire probe in eight sections of the channel located at x1 D 3:1, 12, 22, 35, 40, 45, 50, and 57 cm. The hot-wire probe is introduced in the channel through the impermeable wall, as indicated in Fig. 1. The objective of the present study is to investigate the � ow in the experimentalfacility VECLA. 18 In this aim numerical � owŽ eld predictions are performed by solving the time-averagedNavier– Stokes equations of mass, momentum, and energy using a Reynolds-stress model (RSM). This model is based on the transportequationsof each individual component of the Reynolds-stress tensor and the transport equation of the dissipation rate. The use of such a turbulent model is motivated by the fact that it represents a good compromise between large eddy simulations that require very large computing time and Ž rst-order models that fail to predict complex � ows accurately, as for instance, � ows with strong effects of streamline curvature. Contrary to Ž rst-order turbulence models, second-order turbulence models are based on the pressure-strain correlation term,19 which plays a pivotal role in determining the structure of turbulent � ows. This term of major importance redistributes turbulent energy among the Reynolds-stress components. For calculations of complex wall-bounded turbulent � ows, a wall re� ection term20 is generally incorporated in that model to account for the surface contribution from the solution of the Poisson equation. In a more practical approach some statistical models21¡23 (V2F type model) have been developed recently, which are a simpliŽ ed version of RSM models. These require only the transport equations of the turbulent kinetic energy, the correlation of the normal � uctuating velocities, and the dissipationrate. In that formulationan elliptic equation is introduced and interpreted as an approximation of the wall effects. The RSM model used in this application has been originally developed by Launder and Shima.24 This model is selected because its formulation is simpler and requires less empirical adjustments than most other models. Therefore,it is a good candidateto handle a large variety of � ows. In the present study this model has been extended
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for compressible � ows in a similar way of Huang and Coakley25 and modiŽ ed for simulating injection induced � ows. It has accurately predicted rotating channel � ows.26



Governing Equations Turbulent � ow of a viscous � uid is considered. As in the usual treatments of turbulence, the � ow variable » is decomposed into ensemble Reynolds mean and � uctuating parts as follows: » D »N C » 0



(3)



In the present case the Favre average is used27 for a compressible � uid so that the variable » can be written as » D »Q C » 00



(4)



with the particular properties »Q 00 D 0 and ½» 00 D 0. These relations N The Reynolds average of the Navier– Stokes imply that »Q D ½» =½. equations produces in Favre variables the following forms of the mass, momentum, and energy equations28 : @ ½N @ C .½N uQ j / D 0 @t @x j
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N i j is composed by the mean pressure p, N The mean stress tensor 6 the mean viscous stress ¾N i j , and the turbulent stress ½N ¿i j as follows: N i j D ¡ p± N i j C ¾N i j ¡ ½¿ N ij 6
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where the mean strain rate SNi j and and the Favre-averagedReynoldsstress tensor ¿i j are deŽ ned respectively by 1 SNi j D 2
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The presence of the turbulent contribution ¿ii in Eq. (12) shows a coupling between the mean equations and the turbulent transport equations. The mean heat � ux qNi is composed by the laminar and turbulent � ux contributions: @ TN 00 00 qNi D ¡·N C ½N h] ui @ xi



1 Pkk ±i j 3
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Closure of the mean � ow equations is necessary for the turbulent 00 00 00 stress ½N u] i u j , the molecular diffusion ¾i j u i , the turbulent transport 00 00 00 u u of the turbulent kinetic energy ½N u] , and the turbulent heat � ux k k j 00 00 ui . ½N h]
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The terms on the right-hand side of Eq. (14) are identiŽ ed as production by the mean � ow, dissipationrate, slow redistribution,rapid redistribution, wall re� ection and diffusion. In these expressions k D ¿ii =2 is the turbulent kinetic energy, and ai j D .¿i j ¡ 23 k±i j /= k is the anisotropic tensor. The functions c1 , c2 , cw1 , cw2 depend on the second and third invariants A2 D ai j a ji , A3 D ai j a jk aki , the � atness coefŽ cient parameter A D 1 ¡ 98 . A2 ¡ A 3 /, and the turbulent Reynolds number Rt D k 2 =º². The dissipation rate ² in expression (14) is computed by means of the following transport equation:
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where ²Q D ² ¡ 2º



(10)



and ¹ is the molecular viscosity. Assuming ideal-gas law, the mean thermodynamic pressure is computed by pN D .° ¡ 1/½N EQ ¡ 12 uQ i uQ i ¡ 12 ¿i i
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In this expression the tensor ¾N i j takes the usual form: ¾N i j D 2¹N SN i j ¡



Turbulence Model 00 00 The Favre-averagedcorrelation tensor ¿i j D u] i u j is computed by means of a transport equation as follows:



³ p ´2 @ k @ x2



(21)



Values of the constant coefŽ cients are cs D 0:22, c²1 D 1:45, c² 2 D 1.9, c² D 0:18. The functions suggested by Shima29 are listed in Table 1. Relative to the original model, the function Ã1 has been modiŽ ed for simulating injection induced � ows that are far from equilibrium state because its value can be too large in comparison with the standard value c²1 . Therefore, Ã1 has been bounded, jÃ1 j < 0:125 c²1 . This has the effect of preventing to early laminarization of the � ows. On the other hand, the function Ã2 has been set to zero because of its empirical foundation. Table 1 Functions c1 c2 cw1 c2w fw Ã1 Ã2



Functions in the model of Shima Expressions 1 =4 1 C 2:58AA2



f1 ¡ exp[¡.0:0067Rt /2 ]g 0:75A1=2 ¡ 23 c1 C 1:67 max.23 c2 ¡ 16 ; 0/=c2 0:4k 3 =2 =² x2 1:5 A.Pii =2½² N ¡ 1/ 0:35.1 ¡ 0:3 A2 / exp[¡.0:002Rt /1 =2 ]
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Regarding the molecular diffusion and the turbulent transport terms, a gradient hypothesis has been proposed: ¾i j u 00i



1 00 00 00 ¡ ½N u] u u D 2 k k j
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For the heat transfer the turbulent � ux is computed by means of the k and ² variables: 00 00 h] ui D ¡



c¹ k 2 c p @ TN ² Prt @ xi



(23) Fig. 2 Schematic of channel � ow with � uid injection.



The coefŽ cient c¹ takes the standard value of 0.09.



Numerical Approach Numerical Algorithm



The computations have been performed in two-dimensional geometry. This is a good approximation because the experimental setup is relatively wide (width of 6 cm, height of 1.03 cm) such that the geometric shape factor is approximately six. The Ž nite volume technique is adopted in the present code30 to solve the full transport equations. The vector of the unknown variables is formed by the mass density, the momentum, the total energy, the Reynolds stresses, and the dissipation rate as indicated by 00 00 00 00 00 00 Q ½N u] U T D .½; N ½N uQ 1 ; ½N uQ 2 ; ½N E; N u] N u] 1 u1 ; ½ 1u2 ; ½ 1u3; 00 00 00 00 00 00 N u] N u] N ½N u] 2 u2; ½ 2u3 ; ½ 3 u 3 ; ½²/



(24)



For the two-dimensional computations it is assumed that the mean velocity and the mean gradientsare zero in the spanwise directionx 3 . As expected in that condition, the RSM model produces turbulent 00 u 00 00 00 00 00 ] ] quantities u] 1 3 and u 2 u 3 equal to zero. The correlation u 3 u 3 is computed by the slow part of the redistribution term 8.1/33 and 00 00 by the diffusive term J33 . But this component ¿33 D u] 3 u 3 does not affect the mean motion, as indicated by Eq. (6). The vector U is calculated at the center of each cell, whereas the � uxes F at the cell interfaces are computed by means of an approximate Riemann solvers as follows: F D [F.U R / C F .U L /]=2 ¡ jBj[.U R ¡ U L /=2]



(25)



where jBj is the absolute Jacobian matrix computed at the interface by the Roe average.31 The two approximations U R and U L for the left and right sides are evaluated on each interface of the mesh using a MUSCL approach.32 The numerical scheme is second-orderaccurate in space discretization. The governing equations are integrated explicitely in time using a three-step Runge– Kutta method. No artiŽ cial dissipation is added in the numerical scheme in order to not alter the solving of the transportequations.The code has been previously calibrated with the case of fully developed turbulent channel � ows.30 In the present computations a local time-step technique is used to accelerate convergenceto the stationary state. For each simulation convergence of the numerical results is achieved when the average residual proŽ les go to zero for each dependant variable. In this case it is also veriŽ ed that the ratio of exit mass � ow to the injected mass � ow is close to unity (within 0.1%). Boundary and Initial Conditions



Different boundary conditions are applied in the computational domain shown in Fig. 2. For the impermeable walls no slip on velocity and constant temperature TNw are required. The turbulent kinetic p energy kw D 0 and the wall dissipation rate value ²w D 2º.@ k =@ x 2 /2 , are speciŽ ed.33 The re� ection of the pressure-strain � uctuations from the rigid wall are taken into account through the term 8.w/i j in the transport equation of the Reynolds-stress tensor (14). For the permeable wall the in� ow boundary condition requires a constant mass � ow rate at the same temperature Tw . This implies that the mean injection velocity u s along the normal direction to the wall is computed as



h



u s D c p ¡ pN =m Ru C
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(26)



The turbulent boundary conditions applied at the porous wall are an important issue of the present work. Experimental investigations34¡36 of injected air from porous plates indicate that some stationary velocity � uctuations appear in the � ow and that disturbance amplitude increases with increasing injection velocity. Recently, regarding the VECLA facility, Avalon et al.18 have also shown that the pseudoturbulence intensity close to the porous wall depends on the porosity and the injection velocity. Consequently, the turbulence � uctuations at the porous surface can be related to the mean injection velocity by means of a coefŽ cient deŽ ned as 00 00 2 1=2 ¾s D . u] to be parametrically investigated. Other correla2 u 2 =u s / 00 00 00 00 ] tions such as u] 1 u 1 or u 3 u 3 are smaller than the normal velocity 00 00 u � uctuations u] of the injected � ow. In this work several simu2 2 lations are performed for investigating the in� uence of turbulence in injected � uid for the values ¾s D 0:1, 0:2, 0:3, 0:4, and 0:5. For injection of velocities of low intensity, the standard value of the wall dissipation rate ²w is imposed at the porous surface. This assumes that the porosity of the porous plate is Ž ne grained (8 ¹m). Another point to emphazise concerns the pressure � uctuations. Considering that the permeable wall does not re� ect the pressure � uctuations,the term 8.w/i j of Eq. (14) is reduced to zero in the normal direction to the permeable wall. A pressure boundary condition is applied for the exit section of the channel. Grid Independance



Numerical simulations are performed on reŽ ned meshes requiring 100 £ 100, 200 £ 200, and 200 £ 300 nonuniform grids in x 1 and x 2 directions. For all of the meshes, the grid in the normal direction x 2 is distributed using two geometric progressions from the wall to the center of the channel. For instance, the transverse resolution for the mesh 100 £ 100 is 1 ¹m near the walls and 200 ¹m in the center of the channel. From zero to 0.5 mm, there are 20 points distributed with a geometric progression of 1.128. From 0.5 to 5.1 mm, 30 points are distributed with a geometric progressionof 1.022. The dimensionless distance x 2C D x 2 u ¿ =º between the Ž rst node and the wall is less than 0.3. In such conditions this grid reŽ nement provides full resolutions for the � ow in the permeable wall region and for the boundary layer generated by the rigid walls. A grid-independence study was performed by checking the axial mean velocity and the turbulence intensity. In the case where the grid resolution along the normal direction is not reŽ ned, it has been observed that the distribution of the turbulence intensity of the channel � ow is slightly modiŽ ed. The turbulence is less developed in the wall region. Computations have shown in this case that the turbulent kinetic energy and the dissipation rate levels are in� uenced by the boundary condition of the dissipation rate at the wall. As known, the dissipation rate presents a very strong variation in the wall region. It must be computed accurately. The � ow predictions appear less sensitive to the mesh reŽ nement in the streamwise direction x 1 .



Numerical Results Streamlines and Mean Flow Contours



The streamlines and the mean � ow contours are presented for the simulation performed with the injection parameter ¾s D 0:2. Figure 3 shows the streamlines and the mean velocities of the � owŽ eld. Strong effects of the streamlines curvature are observed near
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Fig. 3



Fig. 5 Mean vorticity contours; ¡ 5:103 < !Å 3 < 105 ; D ¾s = 0.2.



= 1000 (1/s);



Fig. 6 Mean pressure contours; 1:37 < p < 1:53; D ¾s = 0.2.



= 0.004 bar;



Streamlines and mean � ow velocity Ž eld: ¾s = 0.2.



Fig. 4 Mean dimensionless entropy contours; 11:15 < s/cv < 11:19; D = 0.001; ¾s = 0.2. Fig. 7



the porous wall as a result of the � uid injection. The velocities increase rapidly in the boundary layer generated by the rigid wall. Figure 4 represents the mean dimensionless entropy contours sN =cv of the � owŽ eld. It is shown that the trajectories of the entropy lines depart from the permeable wall and move to the exit section of the channel. Applicable to the analysis of the variation of entropy are Crocco’s equation for steady viscous � ows and the steady-state energy equation given respectively by @s @H 1 @¾i j D ²i jk ! j u k C ¡ x x @ i @ i ½ @ xi



(27)



H @ @H 1 @ D .¾i j u i / ¡ .½u j / @x j ½ @xj ½ @x j



(28)



T



uj



where !i D ²i jk @u k =@ x j is the vorticity tensor. In the region of the channel where viscous diffusion, turbulence, and compressible effects can be neglected, Eq. (28) shows that the total enthalpy is constant along the streamlines of the � ow. Because the injection boundary condition is applied at the permeable wall, the stagnation enthalpy has approximately the same constant value along all of the streamlines. Therefore, the enthalpy gradient of Eq. (27) vanishes. Considering that the temperature is almost uniform in the channel and taking into account the vorticity term ²i jk ! j u k as well as the velocity proŽ le (1) for a planar symmetric channel, resolution of Eq. (27) yields the expression for the entropy 2



sD



¼ u 2s x 12 8±2 T



³ sin2



¼ x2 2±



´ (29)



For the VECLA conŽ guration the value at the permeable wall is ss D ¼ 2 u 2s x12 =8± 2 T . This relation shows that the entropy is dependent of the injection velocity u s at the wall. Moreover, it varies as a quadratic function of the axial distance along the channel, as shown by the distribution of the entropy contours. The entropy proŽ le (29) satisŽ es the steady convective equation u j @s =@ x j D 0. In the case of a turbulent � ow regime, the entropy is also created by the turbulent correlation !0j u 0k . Figure 5 shows the mean vorticity contours in the channel. It can be seen that the magnitude of the vorticity increases rapidly at two locations; one near the impermeable wall (x1 D 0:20 m) and the other near the permeable wall (x 1 D 0:48 m), corresponding to the � ow transition. The oscillations of the curves, which appear near the permeable wall, correspond to the physical instabilities of the shear stress, which are produced by the � uid



Mach-number contours; 0 < Mach < 0:35; D



= 0.01; ¾s = 0.2.



injection. The evolution of the mean vorticity can be explained by its transport equation (30) in a steady � ow regime: uQ j



@ !Q i @ 2 !Q i @ Dº ¡ . !00u 00 / C !Q j SQi j C ! 00j Si00j C O @x j @x j@x j @x j i j



(30)



where O representsthe term of compressible� ow effects, which can be neglected. For a two-dimensional computation the mean vorticity is along the spanwise direction !Q 3 D .@ uQ 2 =@ x 1 ¡ @ uQ 1 =@ x 2 /. It is created by the interaction between the � ow injected in the normal direction to the permeable wall and the � ow coming from the head end of the channel in the streamwise direction. The vorticity is convected by the main � ow velocity and modiŽ ed by the laminar and turbulent diffusion processes as indicated by Eq. (30). The gain or loss of the mean vorticity is only caused by the correlation term !00j Si00j composed of the � uctuating vorticity components and by � uctuating strain rates. The laminar contribution !Q j SQi j is reduced to zero for two-dimensional mean � ow. Figure 6 shows the mean pressure contours of the channel � ow and reveals that the pressure is uniform in each cross section of the channel. Figure 7 illustrates the Mach-number contours of the channel � ow. High resolution of the steady-state computational � owŽ eld can be observed through the regular behaviorof the contour lines. The Mach-number ranges from zero in the head end of the channel to approximately 0.35 in the exit section of the channel. Effect of Turbulence in Injected Fluid



Several simulations have been performed to investigate the in� uence of the turbulence injection by means of the parameter coefŽ cient ¾s . As it could be expected,the turbulencetransitionis affected by the pseudoturbulenceinjected through the porous wall. Figure 8 shows the contoursof the turbulentkineticenergyfor the simulations performed with the injection parameter ¾s D 0:1, 0.2, 0.3, 0.4, and 0.5. Because of the presence of permeable and impermeable walls, the development of the turbulence occurs at two different locations in the channel. In particular, it can be seen that the turbulence is developed more rapidly near the impermeable wall region. Relative to the stability of channel � ow bounded by impermeable walls, this result is in agreement with the fact that the stability of channel � ow with � uid injection through the walls increases with the injection Reynolds number, as shown in Fig. 9. This is attributed to the effects of favorable pressure gradient in the permeable wall region, as mentioned by Varapaev and Yagodkin.5 Figure 8 also indicates that increasing the pseudoturbulenceintensity has the effect of triggering early the transition process near the permeable wall. This
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¾ s = 0.1



¾ s = 0.2



Fig. 10 Axial variations of the coefŽ cient ¯: , experimental data; –¢ – , ¾s = 0.1;¢ ¢ ¢ ¢ ¢ , ¾s = 0.2; - - - -, ¾s = 0.3; – – – , ¾s = 0.4; and ——, ¾s = 0.5.



¾ s = 0.3



R±



½N uQ 21 d x2 ¯ D ¡R± 0 ¢2 ½N uQ 1 d x 2 0 N ½±



¾ s = 0.4



¾ s = 0.5 Fig. 8 Contours of turbulent kinetic energy; 0 < k < 160; D



= 5 m2 /s2 .



Effects of the pseudoturbulence injected at the porous wall is well described in this Ž gure. The rapid drops of the coefŽ cient ¯ correspond to the transition locations of the mean velocity proŽ les, which occur near the impermeable wall region and afterward near the permeable wall region. It can be noticed that the low initial turbulenceinjectionat the permeable wall for ¾s D 0:1 is too small to trigger the second transitionprocess near the permeable wall region. This Ž gure reveals a qualitative agreement with the experimental data, but a discrepancy in the magnitude remains in the laminar region of the � ow. It is of interest to compute the coefŽ cient ¯ analyticallyusing the laminar velocity proŽ le. The proŽ le of Eq. (1) can be extended to the VECLA conŽ guration in the range domain [0; ±] with u 1 .0/ D 0 although the effects of the laminar boundary layer for x 2 D ± are not taken into account in this relationship:



µ



u1 D u s



Fig. 9 Variation of axial-� ow Reynolds number Rc = ½c uc ±/¹ for stability vs the injection Reynolds number Rs = ½s us ±/¹: – – – , linear stability analysis5 ; and , present computation.



signiŽ es that � uid injection with high turbulence intensity destabilizes the channel � ow more rapidly than a � uid injection with low turbulence intensity. As a consequence, the transition location near the permeable wall shifts in the upstream direction. On the other hand, the transition of the turbulence near the impermeable wall remains unaffected by turbulence in injected � uid. Figure 8 shows that the contour lines of the turbulent kinetic energy have a similar evolution at the downstream location of the mean � ow transition for ¾s D 0:2, 0.3, 0.4, and 0.5. In the case of a low turbulence level computed with ¾s D 0:1, a different distribution of the turbulence is observed in the channel. This is also illustrated in Fig. 10, which shows for different values of the injection parameter the evolution of the integral momentum � ux coefŽ cient37 deŽ ned by



(31)



x1 ¼ ¼.± ¡ x 2 / cos ± 2 2±



¶



(32)



Computation of the coefŽ cient ¯ taking into account integration of the proŽ le (32) over the domain [0, ±] yields the value ¼ 2 =8 ¼ 1:23, which is quite close to the numerical value predicted by the simulations. This value corresponds strickly to a symmetrical � ow with two-wall injection with respect to the centerline. In the VECLA setup the effect of the nonsymmetry � ow on the ¯ value becomes more and more negligible for the laminar � ow regime as the axial distance from the head end increases. In this case ¯ goes to 1.23. This approximation is not valid very close the head end where the Mach number goes to zero. This phenomenaexplainsthe oscillation values of ¯ in that region. A more deŽ nitive way to determine the axial location of the mean � ow transition consists in examining the local variation of the skin-friction coefŽ cient C f deŽ ned as C f D 2.u ¿ =u m /2



(33)



where the bulk velocity u m is computed by integration over the channel height: um D



1 ±



Z



± 0



uN 1 d x2



(34)



and where the friction velocity u ¿ is computed on the permeable wall u ¿ s D u ¿ .0/ or on the impermeable wall u ¿ w D u ¿ .±/. Figure 11 shows the evolution of the skin-frictioncoefŽ cient computed for the impermeable and permeable walls. As can be observed,the rapid increases of this coefŽ cient reveal the transitionlocationsof the meanvelocity proŽ le, which occurs at different stations in the channel.
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Table 2 x 1 , cm 3.1 12.0 22.0 35.0 40.0 45.0 50.0 57.0



Mean � ow variables



u s , m/s



u m , m/s



u ¿s , m/s



u ¿w , m/s



1.48 1.49 1.50 1.54 1.56 1.58 1.60 1.65



4.62 17.24 32.18 52.44 60.09 68.30 77.07 89.27



0.11 0.20 0.29 0.38 0.41 0.42 1.02 1.65



0.65 1.23 2.67 4.19 4.74 5.15 5.63 6.32



Fig. 12 Mean dimensionless velocity proŽ les in different sections: ¾s = 0.2. Symbols, experimental data; ¢ ¢ ¢ ¢ ¢ , laminar proŽ les; ——, RSM. x1 = 3.1 cm: M ; 12 cm: O ; 22 cm: C ; 35 cm: B ; 40 cm: +; 45 cm: ¤; 50 cm: §; 57 cm: .



a)



a)



b) Fig. 11 Axial variation of the skin coefŽ cient cf : a) permeable wall; b) impermeable wall: –¢ – , ¾s = 0.1;¢ ¢ ¢ ¢ ¢ , ¾s = 0.2; - - - -, ¾s = 0.3; – – – , ¾s = 0.4; and ——, ¾s = 0.5. Mean Velocity and Turbulent ProŽ les



Table 2 indicates the mean � ow variables at different stations of the channel. Figure 12 shows the dimensionless mean velocity proŽ les uN 1 =u s in global coordinates x2 =± in different cross sections of the channel for the RSM prediction performed with ¾s D 0:2. For the Ž rst sections in the channel, the laminar velocity proŽ les computed without turbulence modeling are also represented as dotted lines in this Ž gure. Relative to the permeable wall region, it can be noticed that the velocities in the boundary layer generated by the impermeable wall increases rapidly. This Ž gure shows that the general shapes of the RSM proŽ les present good agreement with experimental data although a minor difference persists for the velocity proŽ les computed in the sections located at 40 and 45 cm. The laminar velocity proŽ les also follow very well the experimental data at the stations x1 D 3:1, 12, and 22 cm, but large discrepanciescaused by the turbulence effects of the � ow are shown for the laminar proŽ le computed at the station x1 D 40 cm. As already observed in the preceding Ž gures, the Ž rst transition of the mean velocity occurs in the channel at the station x 1 D 20 cm. Figure 13 shows the evolutions of the streamwise, normal, and cross turbulent velocity � uctuations normalized by the bulk veloc00 00 1=2 00 00 1 =2 00 00 2 ity, . u] =u m , . u] =u m , . u] 1 u1/ 2 u2/ 1 u 2 /=u m , in different sections x D of the channel located at 1 22, 35, 45, and 57 cm. The levels of



b)



c) Fig. 13 Turbulent velocity � uctuations normalized by the bulk veloc0 0 0 0 1/2 0 0 0 0 1/2 ) /um ; b) ( u] ) /um ; ity in different sections: ¾s = 0.2. a) ( u] 1 u1 2 u2 0 0 0 0 2 . Symbols: experimental data; lines: RSM simulation. )/u c) ( u] u m 1 2 x1 = 22 cm: C, –¢ – ; 35 cm: B , – – – ; 45 cm: ¤, - - - -; 57 cm: , ——.
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a) x1 = 35 cm, B



a) x1 = 35 cm, B



b) 45 cm, ¤



b) 45 cm, ¤



c) 57 cm,



c) 57 cm,



Fig. 14 Rms of streamwise velocity � uctuations in different sections 0 0 nomalized by the injection velocity, a) ( u] u0 0 )1/2 /us . ¾s = 0.2. Symbols: 1 1 experimental data; – – – , k – ² proŽ les; ——: RSM proŽ les.



Fig. 15 Rms of normal velocity � uctuations in different sections nor0 0 0 0 1/2 ) /us . ¾s = 0.2. Symbols: malized by the injection velocity, a) ( u] 2 u2 experimental data; – – – : k – ² proŽ les; ——: RSM proŽ les.



the turbulence are well reproduced by the Reynolds-stress model, although some minor discrepancies with the experimental data are observed for the last section. However, the turbulence levels do not agree with the experimentaldata near the impermeableside .x 2 D ±/. This disagreement could be attributed to the measurements that are not accurate in the vicinity of the impermeable wall because the hotwire probe is introduced through the wall (see Fig. 1). As expected, the intensityof the turbulencevelocity� uctuationsin the streamwise direction is higher than that in the direction normal to the wall. To illustrate the capability of the Reynolds-stress model in the prediction of the turbulent stresses, numerical simulations have also been performed using the standard k – ² model. The model considered in this application incorporates the damping functions of Myong and Kasagi.38 Figures 14 and 15 show the rms of the streamwise and normal turbulent velocity � uctuations normalized by the injection 00 00 1 =2 00 00 1 =2 velocity . u] =u s , . u] =u s in different cross sections of 1u1/ 2u2/ the channel located at x1 D 35, 45, and 57 cm. As already observed, the RSM turbulent model is able to reproduce the evolutions of the Reynolds stresses with good agreement, contrary to the k – ² model, which overpredicts the turbulent stresses by about 300% in the Ž rst sections.



Predictions of channel � ows with � uid injection through a porous wall have been made using an advanced Reynolds-stress model incorporatingtransportequationsof the stress componentsand the dissipation rate. Comprehensive comparisons with experimental data have been presented. It is found that the Reynolds-stress model is able to reproduce the mean velocity proŽ les and the transition process. This model has also predicted the turbulent stresses in good agreement with the experimental data, contrary to the standard k – ² model. Because of the presence of the impermeable and permeable walls, the developmentof turbulencehas occured at two differentlocations in the channel. Effects of pseudoturbulencein injected � uid through the porous surface have also been investigated. It has been observed that the turbulence � uctuations introduced in the injected � ow can anticipate or delay the second � ow transition from laminar to turbulent regime. When the injected turbulence level is greater than a critical threshold, the turbulence intensity in the downstream location of the mean-� ow transition is not modiŽ ed. The present � ow prediction has also revealed that the turbulence is developed more rapidly near the impermeable wall in comparison with the permeable wall, even if turbulence � uctuations are introduced in the injected � ow.
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