Nuclear velocity drops in barred galaxies (σ-drops) - Hervé Wozniak

Improved Polar PM + SPH + SF code. ❑ More accurate self-forces (sub-gridding). ❑ Spatial resolution increased (15 pc in the central region). ❑ CFL condition ...
616KB taille 0 téléchargements 39 vues
Nuclear velocity drops in barred galaxies (σ-drops) Hervé Wozniak & Nicolas Champavert Centre de Recherche Astronomique de Lyon, France 2005 march 10th

Why studying the stellar kinematics of sub-kpc regions in barred galaxies? „

„

„

Region well inside the bar but outside immediate vicinity of any AGN More or less the region where secondary/nuclear bars are expected to develop Should shed some light on nuclear fuelling mechanisms

2005/03/10

2

What should be a ‘normal’ stellar kinematics ? unexpected NGC 4143 (SAB)

NGC 6503

V

σ Bottema 1993 A&A 275, 16 Bottema & Gerritsen 1997 MNRAS 290, 585 Simien & Prugniel 2002 A&A 384, 371

2005/03/10

3

VLT/ISAAC CO 2.3µm absorption lines

IC 184

Emsellem et al. 2001 A&A 368, 52

NGC 2639

WHT/ISIS CaT 8300Å NGC 6814

NGC 6951

Marquez et al. 2003 A&A 409, 459 2005/03/10

4

2D spectroscopy De Zeeuw et al. 2002 MNRAS 329, 513

WHT/SAURON integral field spectrograph Mg b 5175 Å lines (NGC 3623)

2005/03/10

5

Other missed cases?

V

σ E5pec Mg b 5175 Å lines

SB0

SBab

Héraudeau & Simien 1998 A&AS 133, 317 Héraudeau et al. 1999 A&AS 136, 509 Simien & Prugniel 2002 A&A 384, 371 2005/03/10

6

An incomplete census… not statistics Emsellem et al. 2001

NGC 1097

SB(s)b

NGC 1068

SAb (SB!)

NGC 1138

SBO

NGC 1808

SAB(s:)b

Sy 2

Emsellem et al. 2001

NGC 2639

SA(r)a

Sy 1.9

Marquez et al. 2003

NGC 3412

SB0(s)

NGC 3593

SA(s)0/a

Sy 2

Bertola et al. 1993

NGC 3623

SAB(rs)a

Liner

De Zeeuw et al. 2002

NGC 3627

SBb

Liner/Sy 2

Héraudeau & Simien 1998

NGC 4303

SBbc

Sy 2

Héraudeau & Simien 1998

NGC 4579

SBb

Liner/Sy 1.9

Héraudeau & Simien 1998

NGC 4725

SBab

Sy 2

Héraudeau et al. 1999

NGC 4477

SB0

Sy 2

Jarvis et al. 1988

NGC 5728

SABb(r)

Sy 2

Emsellem et al. 2001

NGC 6503

SA(s)cd

Liner/HII

Bottema 1993; Bottema & Gerritsen 1997

NGC 6814

SAB(rs)bc

Sy 1.5

Marquez et al. 2003

NGC 6951

SAB(rs)bc

Sy 2

Marquez et al. 2003

SB(r)a

Sy 2

Marquez et al. 2003

IC 184 2005/03/10

Sy

Emsellem et al. 2005 Simien & Prugniel 2002

Aguerri et al. 2003

7

Tentative dynamical models… „

Bottema & Gerritsen (1997): ‰

‰ ‰

„

N-body simulations (only collisionless particles) Analytical models with/without halo Ad hoc additional ‘cold’ nuclear sphere

Emsellem et al. (2001): ‰

‰

‰

Damped orbits around resonances (Lindblad & Lindblad 1994 formalism) Bulge (Plummer) + Disk (KuzminToomre) + nuclear disk Parameters fitted on V and σ curves

2005/03/10

8

… and successful simulations Wozniak et al. (2003 A&A 409, 469) „

Polar PM + SPH + SF instability criterion (Q < 1.4) ‰

„

Cartesian PM + sticky particles + SF Schmidt law ‰

„

T= 0: 305 000 *, 76 000 gas

Two stellar populations: ‰ ‰

„

T= 0: 500 000 *, 50 000 gas

‘initial’ population ‘new’ population born during the run

Many runs: ‰

‰ ‰

isothermal gas (various initial temperatures and σ) or cooling With/without rigid halo Various resolution and smoothing lengths

2005/03/10

9

Mechanisms of drop formation „

Reservoir of gas in the sub-kpc region ‰

By accretion „

„

„

Active star formation ‰ ‰

„

need a bar (not necessarily a nuclear/secondary bar) or any other non-axisymmetric feature (e.g. nuclear spirals?) From satellites ? Possible but not tested

New stars inherit the gas velocity dispersion at birth Since gas has a lower σ than stars ⇒ σ-drop

Issue: lifetime of a σ-drop ‰ ‰

No more gas Stopped or low-rate star formation

2005/03/10

10

σ-drop lifetime ? Wozniak & Champavert 2005 „

Improved Polar PM + SPH + SF code ‰ ‰ ‰ ‰ ‰

More accurate self-forces (sub-gridding) Spatial resolution increased (15 pc in the central region) CFL condition ⇒ very small time steps ⇒ CPU consuming T= 0: 2 500 000 *, 50 000 gas SF switched off at various time

Depth of a σ–drop: 〈σR〉 (r < 100 pc) = σmin 〈σR〉 (r = 500 ± 50 pc) = σ’max’ Δ σ = σ’max’ - σ min 2005/03/10

11

σ-drop evolution

• 0 < T < 475 Myr: bar formation phase, gas accretion, growing local SFR •475 < T < 800: growing phase; new population more massive than initial one in central region

•T > 800: nearly stable phase but slow heating at the same rate in both regions σ reaches a plateau (→ 2.1 Gyr!)

2005/03/10

12

σ-drop evolution ___ = run with SF ___ = pure N-body run

2005/03/10

13

σ-drop evolution ___ = run with SF ___ = pure N-body run ___ = SF stopped at t=1000 Myr

2005/03/10

14

σ-drop evolution ___ = run with SF ___ = pure N-body run ___ = SF stopped at t=1000 Myr

2005/03/10

15

σ-drop evolution ___ = run with SF ___ = pure N-body run ___ = SF stopped at t=1000 Myr ___ = SF stopped at t= 800 Myr

2005/03/10

16

σ-drop evolution ___ = run with SF ___ = pure N-body run ___ = SF stopped at t=1000 Myr ___ = SF stopped at t= 800 Myr ___ = SF stopped at t= 400 Myr Strong gas accumulation in the central region

2005/03/10

17

Conclusions Nuclear drops in stellar velocity dispersion are likely to be due to a new population which is born in low-σ gas accreted in the central region

1.

σ-drops could be long-lived, despite secular heating, provided:

2.

„ „

2005/03/10

reservoir of gas is regularly refilled star formation is ongoing (even a low rate 〈 1 M~ yr -1 in the central 100 pc)

18

σ-age relationship

2005/03/10

19

σ-age relationship

2005/03/10

20