Myers Chem 115 - M2 SO-IPA

This is illustrated by the progression of a methyl group to a carboxylic acid in a series of ... thioester amide urea. Summary of Reagents for Oxidative Functional Group ... Methylthiomethyl (MTM) ether formation can occur as a side reaction, ..... Alternatively, oxidation of a nitroxyl radical or hydroxyl amine can generate the.
596KB taille 62 téléchargements 406 vues
Myers General Introductory References

Alkane R-CH3

March, J. In Advanced Organic Chemistry, John Wiley and Sons: New York, 1992, p. 1158-1238. Carey, F. A.; Sundberg, R. J. In Advanced Organic Chemistry Part B, Plenum Press: New York, 1990, p. 615-664. Carruthers, W. In Some Modern Methods of Organic Synthesis 3rd Ed., Cambridge University Press: Cambridge, UK, 1987, p. 344-410. Oxidation States of Organic Functional Groups

The notion of oxidation state is useful in categorizing many organic transformations. This is illustrated by the progression of a methyl group to a carboxylic acid in a series of 2-electron oxidations, as shown at right. Included are several functional group equivalents considered to be at the same oxidation state. Summary of Reagents for Oxidative Functional Group Interconversions: Alcohol

organosilanes

organometallics in general RCH2M (M = Li, MgX, ZnX...)

RCH2SiR3'

Alcohol R-CH2OH (R-CH2X ) alkyl halide X = halide

alkane sulfonate X = OSO2R'

alkyl azide X = N3

alkylamine X = NR'2

alkylthio ether X = SR'

alkyl ether X = OR'

Aldehyde (Ketone) R-CHO (RCOR') hemiketal (hemiacetal)

N NR''2

Oppenauer Oxidation Chromium (VI) Oxidants Sodium Hypochlorite N-Bromosuccinimide (NBS) Bromine Cerium (IV) Oxidants

R

hydrazone

R'

R

R

R'

dithiane R

Pyridinium Dichromate (PDC)

ester

Bromine

thioester

Ester

R''O NR2'''

aminal

R

R

R'

R' N

imine R

R'' R'

O

O

R

hydroxamic acid

amide

R

N R''

SR'

trihalomethyl

R

R' N OH

orthoester

R'''

ketene R

RCX3

nitrile

R'

R C N

O R

O O

CH3 (OBO ester shown)

Acid

O2/Pt

Jones Oxidation

Carbonic Acid Ester ROH + CO2 (ROCO2H)

Davis Oxaziridine

MoOPH

Rubottom Oxidation

Lactone

isocyanate

O2/Pt

O

O

α-Hydroxy Ketone carbamate

Fetizon's Reagent

S

R'

RCO2R'

Ester

Ruthenium Tetroxide

Diol

S

Carboxylic Acid R-CO2H

Bayer-Villiger Oxidation

Ketone

R'

R''O enol ether (enamine)

O

Alcohol

R

RCX2R'

geminal dihalide

O

Corey-Gilman-Ganem Oxidation Ketone

R'

R''O OR''' ketal (acetal)

OR''

N oxime

Acid

Silver Oxide Sodium Chlorite Potassium Permanganate Aldehyde

organoboranes RCH2BR2'

R''O OH

Aldehyde or Ketone

Dimethylsulfoxide-Mediated Oxidations Dess-Martin Periodinane (DMP) o-Iodoxybenzoic Acid (IBX) tetra-n-Propylammonium Perruthenate (TPAP) N-Oxoammonium-Mediated Oxidation Manganese Dioxide Barium Manganate Aldehyde

Chem 115

Oxidation

N-Oxoammonium-Mediated Oxidation

RO

N R'

R''

R N C O

alkyl haloformate

RO

S X

xanthate

RO

SR' O

carbodiimide

R N C N R'

urea

R

N R''

R' N R'''

Mark G. Charest

Alcohol

• Pummerer Rearrangement

Aldehyde or Ketone

HO CH3 OH H3C H Dimethylsulfoxide-Mediated Oxidations

H3C

(CF3CO)2O, Ac2O 2,6-lutidine

O

O H

• Reviews

Tidwell, T. T. Organic Reactions 1990, 39, 297-557.

• Dimethylsulfoxide (DMSO) can be activated by reaction with a variety of electrophilic reagents, including oxalyl chloride, dicyclohexylcarbodiimide, sulfur trioxide, acetic anhydride, and N-chlorosuccinimide. • The mechanism can be considered generally as shown, where the initial step involves + electrophilic (E ) attack on the sulfoxide oxygen atom. • Subsequent nucleophilic attack of an alcohol substrate on the activated sulfoxonium intermediate leads to alkoxysulfonium salt formation. This intermediate breaks down under basic conditions to furnish the carbonyl compound and dimethyl sulfide. +



Ph

O

HO CH3 OH H 3C H

O

O

OAc

H

>60%

O

O

H3C



AcO

H

S Ph

S Ph +

Schreiber, S. L.; Satake, K. J. Am. Chem. Soc. 1984, 106, 4186-4188. Swern Procedure • Typically, 2 equivalents of DMSO are activated with oxalyl chloride in dichloromethane at or below –60 °C. • Subsequent addition of the alcohol substrate and triethylamine leads to carbonyl formation. • The mild reaction conditions have been exploited to prepare many sensitive aldehydes. Careful optimization of the reaction temperature is often necessary.

+

+

+

+S

O R

H3C

General Mechanism

H H

H

–BH+ – –RCO2

O HO CH3 OH H3C H

Tidwell, T. T. Synthesis 1990, 857-870.

B

O

O

H3C

S Ph

Lee, T. V. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 7, p. 291-303.

(CH3)2S O

HO CH3 OH H 3C H

E

(CH3)2S

X

X

H H CH3 + + S CH3 R O

Huang, S. L.; Mancuso, A. J.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482. RCH2OH

+

+

(CH3)2S

X– HO



H R

+

(CH3)2S

TBSO

2. 10% Pd/C, AcOH, EtOAc O

O

3. (COCl)2, DMSO; Et3N

O

–78 → –50 °C

OBn

alkoxysulfonium ylide

TBSO

1. TBSCl, Im, DMAP, CH2Cl2

HO

CH2 + S CH3 O

H H R

–H+

O

H

66% • Methylthiomethyl (MTM) ether formation can occur as a side reaction, by nucleophilic attack of an alcohol on methyl(methylene)sulfonium cations generated from the dissociation of sulfonium ylide intermediates present in the reaction mixture. This type of transformation is related to the Pummerer Rearrangement.

Evans, D. A.; Carter, P. H.; Carreira, E. M.; Prunet, J. A.; Charette, A. B.; Lautens, M. Angew. Chem., Int. Ed. Engl. 1998, 37, 2354-2359.

OTBS

OTBS (COCl)2, DMSO;

+

ROH + H2C S CH3

RO

–H+

S

CH3

HO

OCH3

Et3N, –78 °C 90%

Fenselau, A. H.; Moffatt, J. G. J. Am. Chem. Soc. 1966, 88, 1762-1765.

O

OCH3 H

Smith, A. B., III; Wan, Z. J. Org. Chem. 2000, 65, 3738-3753. Mark G. Charest

CH3O

CH3O

CH3 HO OR1

CH3O CH3

CH3O

OH O

(COCl)2, DMSO;

N

CH3

H

R1 O CH3

OCH3

CH3

OR

R = TIPS, R1 = TBS

Hanessian, S.; Lavallee, P. Can. J. Chem. 1981, 59, 870-877. Parikh-Doering Procedure • Sulfur trioxide-pyridine is used to activate DMSO.

Jones, T. K.; Reamer, R. A.; Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998-3017. Pfitzner-Moffatt Procedure

• Ease of workup and at-or-near ambient reaction temperatures make the method attractive for large-scale reactions. Parihk, J. R.; Doering, W. von E. J. Am. Chem. Soc. 1967, 89, 5505-5507.

• The first reported DMSO-based oxidation procedure.

• Examples

• Dicyclohexylcarbodiimide (DCC) functions as the electrophilic activating agent in conjunction with a Brønsted acid promoter.

H3 C

• Typically, oxidations are carried out with an excess of DCC at or near 23 °C.

OH

DMSO, DCC

Cl

O

87%

H

O

CH3

9 : 1 β,γ : α,β

S H3 C

CH3

H

CHO CO2CH3

O

CH 3

CH3

O

O

O

SO3•pyr, Et3N,

H

O

H

Br

H

DMSO, CH2Cl2

O

H

0 → 23 °C

OHC

H

O

Br

H

99%

+

CO2CH3 O

CH 3

H S

CH3

H

CHO

S H3 C

CH3

N

95%

H HO H

DMSO, DCC OH CO2CH3 TFA, pyr

Bn

CH2Cl2, –15 °C

O

H

Corey, E. J.; Kim, C. U.; Misco, P. F. Org. Synth. Coll. Vol. VI 1988, 220-222.

H

O

Evans, D. A.; Ripin, D. H.; Halstead, D. P.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 6816-6826.

Ot-Bu O

TFA, pyr

SO3•pyr, DIEA, DMSO CH3

N

• Alternative carbodiimides that yield water-soluble by-products (e.g., 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDC)) can simplify workup procedures.

Ot-Bu

H 3C

OH

Bn

• Separation of the by-product dicyclohexylurea and MTM ether formation can limit usefulness.

Cl

OCH3

EDC = (CH3)2N (CH 2)3 N C N CH2CH3 • HCl H

CH3

BzO 94%

O

O

R1O

OR

OCH3

FK506

H OR

O

TFA, pyr

N

CH3

OCH3

HO

O

DMSO, EDC

O BzO

O

80%

O

O

CH3

CH3

OTBDPS

OTBDPS

O

O OR1

Et3N, –78 °C

H OR

CH3

H3 C

CH3

Semmelhack, M. F.; Yamashita, A.; Tomesch, J. C.; Hirotsu, K. J. Am. Chem. Soc. 1978, 100, 5565-5576.

Evans, P. A.; Murthy, V. S.; Roseman, J. D.; Rheingold, A. L. Angew. Chem., Int. Ed. Engl. 1999, 38, 3175-3177.

O

H H

Et Br

H

O

Br

H

(–)-kumausallene

Mark G. Charest

Dess-Martin Periodinane (DMP)

• Examples

• DMP has found wide utility in the preparation of sensitive, highly functionalized molecules. • DMP oxidations are characterized by short reaction times, use of a single equivalent of oxidant, and can be moderated with regard to acidity by the incorporation of additives such as pyridine. • DMP and its precurser o-iodoxybenzoic acid (IBX) are potentially heat and shock sensitive and should be handled with appropriate care. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1983, 48, 4155-4156.

H3C H3C H H3 C TBSO

H

1. DIBAL 2. DMP

O I

CH3

CH3 H3C H H3C TBSO

H3C H H3C HO AcOO

H O

H

I

89% overall

PivO

Boeckman, R. K.; Shao, P.; Mulins, J. J. Org. Synth. 1999, 77, 141-152.

H3C

H3C CH3

O

(–)-7-deacetoxyalcyonin acetate

H

Overman, L. E.; Pennington, L. D. Org. Lett. 2000, 2, 2683-2686.

Plumb, J. B.; Harper, D. J. Chem. Eng. News 1990, July 16, 3. HO –

I +

O OH + I

2.0 M H2SO4

KBrO3

65 °C, 2.5 h

CO2 H

~100%

IBX

Polson, G.; Dittmer, D. C. J. Org. Chem. 1988, 53, 791-794.

O

74% overall

O CH3O

DMP

OH

• Addition of one equivalent of water has been found to accelerate the reaction, perhaps due to the formation of an intermediate analogous to II. It is proposed that the decomposition of II is more rapid than the initially formed intermediate I.

DMP

R1R2CHOH –AcOH

O

I

OAc I + R1R2C=O + AcOH

slow

O O

O

R1R2CHOH –AcOH R1 R2 Ac O O I O

II O

H

OCHR1R2 I + R1R2C=O + AcOH

fast

OCHR1R 2

O O

Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.

CHO

• Use of other oxidants in the following example led to conjugation of the β,γ-unsaturated ketone, which did not occur when DMP was used.

H

OAc

70%

O CH3O

CH3

R1 R2 H

DMP

Danishefsky, S. J.; Mantlo, N. B.; Yamashita, D. S.; Schulte, G. K. J. Am. Chem. Soc. 1988, 110, 6890-6891.

Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549-7552.

Ac O O I

O

O

Ac OAc O I OAc O

85 °C

Se

Se + Ac2O + AcOH

O O

then 23 °C, ~24 h

O

DMP

H3C DEIPSO

O

O OTES O O 1. DDQ, CH2Cl2, H2O H CH3 CH3 CH3 CH3 H 2. DMP, CH2Cl2, pyr H O TBSO TESO 93% overall O Si(t-Bu)2 OPMB OCH3 O CH3 O CH3 CH3 OTES TESO H O H3C O OTES H DEIPSO O O H CH 3 CH3 CH3 CH3 H H (–)-cytovaricin O TBSO TESO O Si(t-Bu)2 O OCH3 O CH3 O CH3 OTES TESO H

Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031. Mark G. Charest

• DMP oxidation in the presence of phosphorous ylides allows for the trapping of sensitive aldehydes.

• Pyridines are not oxidized at a rate competitive with the oxidation of a primary alcohol.

HO

OH OH

DMP, CH2Cl2, DMSO

+

CH 3O2C

N

PhCO2H

CHO

IBX, DMSO N

99%

CO2CH 3

Ph3P=CHCO2CH3 94% (2.2 : 1 E,E : E,Z)

Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019-8022.

Barrett, A. G. M.; Hamprecht, D.; Ohkubo, M. J. Org. Chem. 1997, 62, 9376-9378. • IBX has been shown to form α,β-unsaturated carbonyl compounds from the corresponding saturated alcohol or carbonyl compound.

O NHFmoc

HO

DMP

NHFmoc

H

O

OH

>90%

SCH3

2.3 equiv IBX

SCH3

toluene, DMSO Myers, A. G.; Zhong, B.; Kung, D. W.; Movassaghi, M.; Lanman, B. A.; Kwon, S. Org. Lett., in press.

88%

o-Iodoxybenzoic Acid (IBX)

4.0 equiv IBX

• The DMP precursor IBX is gaining use as a mild reagent for the oxidation of alcohols.

OH

N

• A simpler preparation of IBX has recently been reported.

H O OH + I

oxone, H2O

CO2H

O

N

84%



I

toluene, DMSO

70 °C

O O

79-81%

O

O

H

IBX

TIPS

Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.

H

2.0 equiv IBX

TIPS

toluene, DMSO H

H

87% • IBX is used as a mild reagent for the oxidation of 1,2-diols without C-C bond cleavage. H3 C H3 C

AcO

HO

O

H3 C

85%

6.0 equiv IBX

H3 C

IBX, DMSO AcO

OH

Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019-8022.

toluene, DMSO OH

HO

O

OH

O

O

52%

O Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596-7597.

Mark G. Charest

tetra-n-Propylammonium Perruthenate (TPAP): Pr4N+RuO4 –

F

• Reviews

F

OH

Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639-666. Griffith, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13-19.

TPAP, NMO, CH2Cl2

N

H3C

CHO

H 3C

4 Å MS, 23 °C

– • Ruthenium tetroxide (RuO4, Ru(VIII)) and, to a lesser extent, the perruthenate ion (RuO4 , Ru(VII)) are powerful and rather nonselective oxidants.

N

79%

• However, perruthenate salts with large organic counterions prove to be mild and selective oxidants in a variety of organic solvents.

Robol, J. A.; Duncan, L. A.; Pluscec, J.; Karanewsky, D. S.; Gordon, E. M.; Ciosek, C. P.; Rich, L. C.; Dehmel, V. C.; Slusarchyk, D. A.; Harrity, T. W.; Obrien, K. A. J. Med. Chem. 1991, 34, 2804-2815.

• In conjunction with a stoichiometric oxidant such as N-methylmorpholine-N-oxide (NMO), TPAP oxidations are catalytic in ruthenium, and operate at room temperature. The reagents are relatively non-toxic and non-hazardous. • To achieve high catalytic turnovers, the addition of powdered molecular sieves (to remove both the water of crystallization of NMO and the water formed during the reaction) is essential.

H3C CH3 HCH3O CH3O OTBS TPAP, NMO, CH Cl 2 2 CH3O H H O O 4 Å MS, 23 °C

CH 3O CH3O

The following oxidation state changes have been proposed to occur during the reaction:

O



OH –

Ru(VII) + 2e → Ru(V)

TBSO

78%

H3C CH3 HCH3O OTBS H H O O O

O

H

O

TBSO

2Ru(V) → Ru(VI) + Ru(IV)

Julia-Lythgoe Olefination

Ru(VI) + 2e– → Ru(IV) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625-1627. • Examples O

OH

O

O

O

N TEOC

23 °C H

N TEOC

0 °C H

OCH3 H OTBS O O O

CH3

N

CH3 TESO

H

O CH 3

O

TPAP, NMO, CH2 Cl2 4 Å MS, 23 °C CH3 CH3

O H3C

CH3 87%

CH3 TESO

O OCH3 H OTBS O O O OH O CH3

CH3 CH3

OH

H 3C

H 3C CH3

H3C CH3 HCH3O OTBS H H O O

CH3 O CH3O O

OH

29%

84%

H3C CH3 HCH3O OTBS H H O O

CH3O CH3O

Bu4N+F–, THF

TPAP, CH2Cl2

O

CH3

CH3

(±)-indolizomycin CH3O2C Kim, G.; Chu-Moyer, M. Y.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1993, 115, 30-39.

H3 C CH 3 H HO OAc H H O O O

HO

CH3

TPAP, NMO, CH2 Cl2 4 Å MS, 23 °C

CH3

O

OH H OH O

CH3

H

CH3

70% Ley, S. V.; Smith, S. C.; Woodward, P. R. Tetrahedron 1992, 48, 1145-1174.

O CH3 n-Pr

O bryostatin 3

O

Ohmori, K.; Ogawa, Y.; Obitsu, T.; Ishikawa, Y.; Nishiyama, S.; Yamamura, S. Angew. Chem., Int. Ed. Engl. 2000, 39, 2290-2294.

OH

O Mark G. Charest

N-Oxoammonium-Mediated Oxidation • Reviews

• Examples

de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Synthesis 1996, 1153-1174.

H3 C

Bobbitt, J. M.; Flores, C. L. Heterocycles 1988, 24, 509-533.

O

Rozantsev, E. G.; Sholle, V. D. Synthesis 1971, 401-414.

CH3 N

Boc OH

TEMPO, NaOCl, NaBr EtOAc : toluene : H2O

CH3

H3 C O

N

H

(1 : 1 : 0.15)

• N-Oxoammonium salts are mild and selective oxidants for the conversion of primary and secondary alcohols to the corresponding carbonyl compounds. These oxidants are unstable and are invariably generated in situ in a catalytic cycle using a stable, stoichiometric oxidant.

Boc

O

90% Jurczak, J.; Gryko, D.; Kobrzycka, E.; Gryza, H.; Prokopoxicz, P. Tetrahedron 1998, 54, 6051-6064.

X–

R

+

N O

R1

H OH + R2

O

–HX

R

+ R2

R3

R3

R1

N OH

OH

N-oxoammonium salt

O OTBDPS

• Three possible transition states have been proposed:

R

+

N

–O

R

R1 O

H

+

N

HO R2 R1

R

N

OTBDPS

H3C CH3

R1

H3C CH3 98%

O O

B

H R2

R1

H

23 °C

R1 O

TEMPO, BAIB, CH2Cl2

H

R2 R1

O O

Ganem, B. J. Org. Chem. 1975, 40, 1998-2000.

O

OH H

CHO

Jauch, J. Angew. Chem., Int. Ed. Engl. 2000, 39, 2764-2765.

Semmelhack, M. F.; Schmid, C. R.; Cortés, D. A. Tetrahedron Lett. 1986, 27, 1119-1122.

H H3C CH3

Bobbitt, J. M.; Ma, Z. J. Org. Chem. 1991, 56, 6110-6114.

kuehneromycin A

• N-Oxoammonium salts may be formed in situ by the acid-promoted disproportionation of nitroxyl radicals. Alternatively, oxidation of a nitroxyl radical or hydroxyl amine can generate the corresponding N-oxoammonium salt.

• Selective oxidation of allylic alcohols in the presence of sulfur and selenium has been demonstrated.

disproportionation R 2

N O

+H+

R1

–H

R

+

R N 1 OH

R +

N O

R1

PhS

TEMPO, BAIB, CH2Cl2 CH2OH

PhS

23 °C

CHO

nitroxyl radical 70% Golubev, V. A.; Sen', V. D.; Kulyk, I. V.; Aleksandrov, A. L. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1975, 2119-2126. • 2,2,6,6-Tetramethyl-1-piperidinyloxyl (TEMPO) catalyzes the oxidation of alcohols to aldehydes and ketones in the presence of a variety of stoichiometric oxidants, including m-chloroperoxybenzoic acid (m-CPBA), sodium hypochlorite (NaOCl), [bis(acetoxy)-iodo]benzene (BAIB), sodium bromite (NaBrO2 ), and Oxone (2KHSO5•KHSO4•K2SO4 ).

H3 C H3 C

CH3 N O

CH3

TEMPO

H3 C

CH2 OH SePh

TEMPO, BAIB, CH2Cl2 23 °C

H 3C

CHO SePh

55% De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. 1997, 62, 6974-6977. Mark G. Charest

Manganese Dioxide: MnO2

TBSO

H

TBSO

H

SAr

• Reviews Cahiez, G.; Alami, M. In Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Reagents, Burke, S. D.; Danheiser, R. L., Eds., John Wiley and Sons: New York, 1999, p. 231-236.

HO

HO

H

O

H

H

OAc

H

SAr

MnO2, acetone 76%

HO

O HO

OAc

H

Fatiadi, A. J. Synthesis 1976, 65-104. Trost, B. M.; Caldwell, C. G.; Murayama, E.; Heissler, D. J. Org. Chem. 1983, 48, 3252-3265.

Fatiadi, A. J. Synthesis 1976, 133-167. • A heterogenous suspension of active manganese dioxide in a neutral medium can selectively oxidize allylic, benzylic and other activated alcohols to the corresponding aldehyde or ketone. • The structure and reactivity of active manganese dioxide depends on the method of preparation. • Active manganese oxides are nonstoichiometric materials (in general MnOx, 1.93 < x < 2) consisting of Mn (II) and Mn (III) oxides and hydroxides, as well as hydrated MnO2. • Hydrogen-bond donor solvents and, to a lesser extent, polar solvents have been shown to exhibit a strong deactivating effect, perhaps due to competition with the substrate for the active MnO2 surface.

H3C CH3

CH3

H CH 3

CH3 CH3

HO

MnO2

OH

acetone

CH3 75%

CH3 OH H CH 3

CH3

CH3

H3C CH3

O

• Examples CH3 H 3C CH3

CH3

CH3

H 3C CH3 OH

CH3

CH3 H

MnO2

CH3 OH

O

pet. ether

CH3

HO

CH3

• Vinyl stannanes are tolerated.

Ball, S.; Goodwin, T. W.; Morton, R. A. Biochem. J. 1948, 42, 516-523.

CH3 CH2OH

Bu3Sn

CHO

CH 2OH

61%

CO2Et

OHC

CHO

74%

CHO

• Syn or anti vicinal diols are cleaved by MnO2 . HO

2. MnO2, CH2Cl2 CH3

CH2 Cl2

CH3 Bu3Sn

Alvarez, R.; Iglesias, B.; Lopez, S.; de Lera, A. R. Tetrahedron Lett. 1998, 39, 5659-5662.

1. DIBAL, C6H6

H3 C

MnO2

89%

Crombie, L.; Crossley, J. J. Chem. Soc. 1963, 4983-4984.

EtO2C

paracentrone

Haugan, J. A. Tetrahedron Lett. 1996, 37, 3887-3890.

80%

MnO2

CH3

CH3 OH

O H3 C

CH 3 H3 C

Cresp, T. M.; Sondheimer, F. J. Am. Chem. Soc. 1975, 97, 4412-4413.

CH3

CH3

O

MnO2

100%

CH3 CH 3

Ohloff, G.; Giersch, W. Angew. Chem., Int. Ed. Engl. 1973, 12, 401-402. Mark G. Charest

Barium Manganate: BaMnO4

Oppenauer Oxidation

• Review

• Review

Fatiadi, A. J. Synthesis 1987, 85-127.

de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007-1017.

• Barium manganate and potassium manganate are deep green salts that can be used without prior activation for the oxidation of primary and secondary allylic and benzylic alcohols.

• A classic oxidation method achieved by heating the alcohol to be oxidized with a metal alkoxide in the presence of a carbonyl compound as a hydride acceptor. •

Effectively the reverse of the Meerwein-Pondorff-Verley Reduction.

• Examples

R

• The reaction is an equilibrium process and is believed to proceed through a cyclic transition state. The use of easily reduced carbonyl compounds, such as quinone, helps drive the reaction in the desired direction.

R CH2 OH

BaMnO4, CH2Cl2

R1 L R3 M R2 O L H O R4

CHO

40 °C CH 2OH

CHO 66%

R = CH3

Proposed Transition State Gilchrist, T. L.; Tuddenham, D. J. Chem. Soc., Chem. Commun. 1981, 657-658.

Djerassi, C. Org. React. 1951, 6, 207. Oppenauer, R. V. Rec. Trav. Chim. Pays-Bas 1937, 56, 137-144.

OH

O

H 3C

H3 C OH

• Examples OH

BaMnO4

CH2OH

CHO pivaldehyde, toluene

92%

H3C CH3

H3 C CH3

2 mol % F5

H3 C Howell, S. C.; Ley, S. V.; Mahon, M. J. Chem. Soc., Chem. Commun. 1981, 507-508.

(S)-perillyl alcohol

F5 B OH

H3 C

99% CH3 H3 C H SEMO

O

CH2OH

CH 3 BaMnO4, CH2Cl2

H3 C

H

H 98%

O

CHO H

Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1997, 62, 5664-5665. • Highly reactive zirconium alkoxide catalysts undergo rapid ligand exchange and can be used in substoichiometric quantities.

SEMO

CH3

CH3 cat. Zr(O-t-Bu)4 , Cl3CHO, CH2Cl2 OH

Burke, S. D.; Piscopio, A. D.; Kort, M. E.; Matulenko, M. A.; Parker, M. H.; Armistead, D. M.; Shankaran, K. J. Org. Chem. 1994, 59, 332-347. H3 C

CH3

3 Å MS 86%

O H3 C

CH3

menthol Krohn, K.; Knauer, B.; Kupke, J.; Seebach, D.; Beck, A. K.; Hayakawa, M. Synthesis 1996, 1341-1344. Mark G. Charest

Chromium (VI) Oxidants

Collins Reagent: CrO3 •pyr2

• Reviews Ley, S. V.; Madin, A. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 7, p. 251-289. Luzzio, F. A. Organic Reactions 1998, 53, 1-122. • The mechanism of chromic acid-mediated oxidation has been extensively studied and is commonly used as a model for other chromium-mediated oxidations.

• CrO3 •pyr2 is a hygroscopic red solid which is easily hydrolyzed to the yellow dipyridinium dichromate ([Cr2O7]–2 (pyrH+)2). • Typically, 6 equiv of oxidant in a chlorinated solvent leads to rapid and clean oxidation of alcohols. • Caution: Collins reagent should be prepared by the portionwise addition of solid CrO3 to pyridine. Addition of pyridine to solid CrO3 can lead to a violent reaction. Collins, J. C.; Hess, W. W.; Frank, F. J. Tetrahedron Lett. 1968, 30, 3363-3366.

R 2CHOH +

HCrO4–

R2 C O CrO3H H

+ H

+

R2CHOCrO3H + H2O R2C O

Collins, J. C.; Hess, W. W.; Org. Synth. 1972, 52, 5-9.

+ HCrO3– + BH+

• In situ preparation of the reagent circumvents the difficulty and danger of preparing the pure complex. OH O H3 C H3 C

B

CrO3, pyr, CH2Cl2 Holloway, F.; Cohen, M.; Westheimer, F. H. J. Am. Chem. Soc. 1951, 73, 65-68. H

H3 C

• A competing pathway involving free-radical intermediates has been identified.

95%

CH3

R2CHOH

+

Cr(IV)

R2COH

+

Cr(III)

+

H+

Ratcliffe, R.; Rodehorst, R. J. Org. Chem. 1970, 35, 4000-4003.

R2COH

+

Cr(VI)

R2C=O

+

Cr(V)

+

H+

• Examples

R2CHOH

+

Cr(V)

R2C=O

+

Cr(III)

+

2H +

HO H3 C O

Wiberg, K. B.; Mukherjee, S. K. J. Am. Chem. Soc. 1973, 96, 1884-1888.

• Fragmentation has been observed with substrates that can form stabilized radicals.

+

OTBS

OH Cr O O

OCrO3H

1. n-Bu4 N+F–, THF CH3

CH3

O

O

CH 2Cl2 81% overall

O

CH3

CH3 (±)-periplanone B

Still, W. C. J. Am. Chem. Soc. 1979, 101, 2493-2495. O

1. H2, 10% Pd-C

OCH3 H

2. Collins Reagent

CH3O2C

O CH3 CH3

83%

O

H

2. Collins Reagent O

Doyle, M.; Swedo, R. J.; Rocek, J. J. Am. Chem. Soc. 1973, 95, 8352-8357.

O

H

O

(CH3)3C•

–Cr(III)

• Tertiary allylic alcohols are known to undergo oxidative transposition.

CH 3

Poos, G. I.; Arth, G. E.; Beyler, R. E.; Sarett, L. H. J. Am. Chem. Soc. 1953, 75, 422-428.

O

PhCHO

O

89%

O

Wiberg, K. B.; Szeimies, G. J. Am. Chem. Soc. 1973, 96, 1889-1892.

H Ph C O Cr(IV) (CH 3)3C

O

H

O H3 C

CrO3, pyr

H

H

H3 C

CH2Cl2

CH3O2C

OCH3 CHO CH3 CH3

90% overall (+)-monensin Collum, D. B.; McDonald, J. H.; Still, W. C. J. Am. Chem. Soc. 1980, 102, 2117-2120. Mark G. Charest

Pyridinium Chlorochromate (PCC, Corey's Reagent)

Sodium Hypochlorite: NaOCl • Sodium hypochlorite in acetic acid solution selectively oxidizes secondary alcohols to

ketones in the presence of primary alcohols.

ClCrO3– +N

• A modified procedure employs calcium hypochlorite, a stable and easily handled solid

H

PCC

hypochlorite oxidant. • Examples

• PCC is an air-stable yellow solid which is not very hygroscopic.

OH

OH

• Typically, alcohols are oxidized rapidly and cleanly by 1.5 equivalents of PCC as a solution in N,N-dimethylformamide (DMF) or a suspension in chlorinated solvents.

CH3

CH3

NaOCl, AcOH

• The slightly acidic character of the reagent can be moderated by buffering the reaction mixture with powdered sodium acetate.

H3 C

OH

91%

H3 C

O

Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 26, 2647-2650. • Addition of molecular sieves can accelerate the rate of reaction.

Stevens, R. V.; Chapman, K. T.; Stubbs, C. A.; Tam, W. W.; Albizati, K. F. Tetrahedron Lett. 1982, 23, 4647-4650.

Antonakis, K.; Egron, M. J.; Herscovici, J. J. Chem. Soc., Perkin Trans. I 1982, 1967-1973.

Nwaukwa, S. O.; Keehn, P. M. Tetrahedron Lett. 1982, 23, 35-38.

• Examples

HO

O

CH3 O

H Cl

OTIPS O

PCC, 25 °C 4 Å MS

CH3 OH

O H Cl

H3 C

OTIPS

100%

H

CH3 N

OH

Kende, A. S.; Smalley, T. L., Jr.; Huang, H. J. Am. Chem. Soc. 1999, 121, 7431-7432. CH3

CH3 N

PCC, CH2Cl2

N CH2Ph

PCC, 25 °C 4 Å MS 100%

O

NaOCl, AcOH S H H3C

O

71%

OH

CH3 OH

OH

86%

H H3 C

OH

Corey, E. J.; Lazerwith, S. E. J. Am. Chem. Soc. 1998, 120, 12777-12782.

Browne, E. J. Aust. J. Chem. 1985, 38, 756-776.

O

OMOM

93%

H

NaOAc

S

N

O H3 C

2. MOMCl, DIEA

O

Corey, E. J.; Wu, Y.-J. J. Am. Chem. Soc. 1993, 115, 8871-8872.

N

1. NaOCl, AcOH

NC

NC

PhCH2

OH

PhCH 2 O

N

O

N N CH2Ph

Knapp, S.; Hale, J. J.; Bastos, M.; Gibson, F. S. Tetrahedron Lett. 1990, 31, 2109-2112.

H

n-C9H19 CH2OH OH CH3

n-C9H19 CH2OH

NaOCl, AcOH 71%

O CH3

Winter, E.; Hoppe, D. Tetrahedron 1998, 54, 10329-10338.

Mark G. Charest

Selective Oxidations Using N-Bromosuccinimide (NBS) or Bromine

Selective Oxidations using Other Methods

• NBS in aqueous dimethoxyethane selectively oxidizes secondary alcohols in the presence of primary alcohols.

• Cerium (IV) complexes catalyze the selective oxidation of secondary alcohols in the presence of primary alcohols and a stoichiometric oxidant such as sodium bromate (NaBrO3).

• Examples

Tomioka, H.; Oshima, K.; Noxaki, H. Tetrahedron Lett. 1982, 23, 539-542. CH3

HO

OH

CH3

HO NBS, DME, H2O

CH3

CH3 H3C

• In the following example, catalytic tetrahydrogen cerium (IV) tetrakissulfate and stoichiometric potassium bromate in aqueous acetonitrile was found to selectively oxidize the secondary alcohol in the substrate whereas NaOCl with acetic acid and NBS failed to give the desired imide.

O

>98%

H3C

CH3

CH3

O

O

NPh OH CH2OH

Corey, E. J.; Ishiguro, M. Tetrahedron Lett. 1979, 20, 2745-2748.

Ce(SO4)2 •2H2SO4, KBrO3

O

O

HO H

O O

H3C HO O

O

H t-Bu

O

Br2, AcOH

O

HO H HO H

HO O

H >51%

O

O O CH3

48%

(±)-palasonin

Rydberg, D. B.; Meinwald, J. Tetrahedron Lett. 1996, 37, 1129-1132.

O O

• TEMPO catalyzes the selective oxidation of primary alcohols to aldehydes in a biphasic mixture of dichloromethane and aqueous buffer (pH = 8.6) in the presence of N-chlorosuccinimide (NCS) as a stoichiometric oxidant and tetrabutylammonium chloride (Bu4 N+Cl–).

H t-Bu

O

H3C

NaOAc

O

O

NPh O CH2OH

7 : 3 CH3CN, H2O, 80 °C

• Bromine has been employed for the selective oxidation of activated alcohols. In the following example, a lactol is oxidized selectively in the presence of two secondary alcohols.

O

O

O

H OH

(±)-ginkgolide B

TEMPO, NCS, +

OH

O



Bu4N Cl Crimmins, M. T.; Pace, J. M.; Nantermet, P. G.; Kim-Meade, A. S.; Thomas, J. B.; Watterson, S. H.; Wagman, A. S. J. Am. Chem. Soc. 2000, 122, 8453-8463.

OH

+

CH2Cl2, H2O,

OH

CHO

pH 8.6 77%

• Stannylene acetals are oxidized in preference to alcohols in the presence of bromine.

0.50%

TEMPO, NCS, Cbz

CH3 OH N

H3C O O

OH O O

O Sn

Bu

CH3 N Cbz

Cbz Br2

Bu3SnOCH3 70%

CH3 OH N

H3 C O O

OH O O

OH

OH

CH3 N Cbz H2 Pd/C 90%

Bu

H3 C

OH H

H N

HO H3C

N

O

H

O

O H HO O H

(+)-spectinomycin

CH3

Bu4N+Cl–

8

OH

CH2Cl2, H2O, pH 8.6

OH

O CHO

8 82%

+ 8

OH

52% O

CO2CH3

Nicolaou, K. C.; Ohshima, T.; Murphy, F.; Barluenga, S.; Xu, J.; Winssinger, N. J. Chem. Soc., Chem. Commun. 1999, 809-810.

OH

>95%

OMOM HO H3 C O

CO2H

HO CH3

H CH3

(±)-antheridic acid

NaClO2, NaH2PO4,

OMOM

90%

O O H 3C H H 3C

H

O

H H

OMOM

O

Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004-1015.

CH3 O

OCH3

OSEM

1. DMP, CH2Cl2, pyr 2. NaClO2, NaH2PO4 2-methyl-2-butene, t-BuOH, H2O 3. CH2N2 98%

OMOM

OH

acetone, H2O

O

O

H3C

OCH3 OTf

2-methyl-2-butene H

H3C

H3C CH3O

O

OCH3 OTf

OH

OH

2,6-lutidine

Corey, E. J.; Myers, A. G. J. Am. Chem. Soc. 1985, 107, 5574-5576.

O

H3 C O

THF, t-BuOH, H2O

2-methyl-2-butene TBSO H3C CHO CO CH 2 3

CH3

O

2-methyl-2-butene,

1. NaClO2, NaH2PO4, t-BuOH, H2O

n-Bu3Sn

1. TPAP, NMO, CH2Cl2 2. NaClO2, NaH2PO 4

O

H3C

O

CH3

O

(+)-monensin A

H3 C CH3O CH3 O2C H CH3 CH3

O

O O H 3C H H3C

H3 C

H

H3C O

H H

CH3 O

OCH3

Ireland, R. E.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115, 7166-7172.

OSEM

Potassium Permanganate: KMnO4

• In the following example, a number of other oxidants (including Jones reagent, NaOCl, and RuO2) failed.

• Review Fatiadi, A. J. Synthesis 1987, 85-127.

1. KMnO4, NaH2PO4,

• Potassium permanganate is a mild reagent for the oxidation of aldehydes to the corresponding carboxylic acids over a relatively large pH range. Alcohols, alkenes, and other functional groups are also oxidized by potassium permanganate. • Oxidation occurs through a coordinated permanganate intermediate by hydrogen atom-abstraction or hydride transfer.

t-BuOH, H2 O, 0 °C

TsN

N Ts H

H O

H

TsN

N Ts CH3O

2. (CH3)3SiCHN 2

H O

80%

H

Freeman, F.; Lin, D. K.; Moore, G. R. J. Org. Chem. 1982, 47, 56-59. Rankin, K. N.; Liu, Q.; Henrdy, J.; Yee, H.; Noureldin, N. A.; Lee, D. G. Tetrahedron Lett. 1998, 39, 1095-1098. • Potassium permanganate in the presence of tert-butyl alcohol and aqueous NaH2PO4 was shown to effectively oxidize the aldehyde in the following polyoxygenated substrate to the corresponding carboxylic acid whereas Jones reagent, RuCl3 (H2O)n-NaIO4, and silver oxide failed. OCH3

BnO

H3C

O CH3

O H3C

H H

OTBS

O

N

N HH

Bergmeier, S. C.; Seth, P. P. J. Org. Chem. 1999, 64, 3237-3243.

O

O

OTBS

(–)-yohimbane

KMnO4, NaH2PO4 Silver Oxide: Ag2O

t-BuOH, H2O

CHO

CH3

• A classic method used to oxidize aldehydes to carboxylic acids.

85%

• Cis/trans isomerization can be a problem with unsaturated systems under the strongly basic reaction conditions employed.

OTBS OTBS

OCH3

BnO

OTBS

• Examples CHO

Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537-4540.

O H3C

O CH3

O H3 C

O

O

CO2 H

CH3

CO2H 1. Ag2O, NaOH

HO

2. HCl

HO

OCH3

OTBS

OCH3 90-97%

vanillic acid

• Examples O

CN

CN

O

Pearl, I. A. Org. Synth. IV 1963, 972-978.

KMnO4, NaH2 PO4 CHO N Boc

t-BuOH, H2O, 5 °C 93.5%

H3C

CO2H N Boc

H3 C CH3 CH3 CHO

O

O NH

N O

0 °C

CH3 CH3 CO2H

72%

O Heffner, R. J.; Jiang, J.; Joullié, M. M. J. Am. Chem. Soc. 1992, 114, 10181-10189. (CH3)2N

Ag2O, CH3OH

N H H3C

(–)-nummularine F

Sonawane, H. R.; Sudrik, S. G.; Jakkam, M. M.; Ramani, A.; Chanda, B. Synlett. 1996, 175-176.

CH3

Mark G. Charest

• Additional Examples

• In the following example, all chromium-based oxidants failed to give the desired acid. O S

O S

OCH3 CHO

O

OTBDPS H

CH3O

CO2H

1. Ag2O, NaOH 2. HCl

OMEM

O

OTBDPS

PDC, DMF

OH

CH3O O 100%

OMEM Mazur, P.; Nakanishi, K. J. Org. Chem. 1992, 57, 1047-1051.

81%

O

CO2H

O

N

N

• PDC can oxidize aldehydes to the corresponding methyl esters in the presence of methanol. It appears that in certain cases, the oxidation of methanol by PDC is slow in comparison to the oxidation of the methyl hemiacetal.

Ovaska, T. V.; Voynov, G. H.; McNeil, N.; Hokkanen, J. A. Chem. Lett. 1997, 15-16.

• Attempts to form the ethyl and isopropyl esters were less successful.

Pyridinium Dichromate: (pyrH+)2Cr2O7

• Note that in the following example sulfide oxidation did not occur.

• Review O

Ley, S. V.; Madin, A. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 7, p. 251-289.

O

H O

BnO BnO

• PDC is a stable, bright orange solid prepared by dissolving CrO3 in a minimun volume of water, adding pyridine and collecting the precipitated product.

SEt

BnO

CH3O BnO BnO

PDC, DMF 6 equiv CH 3OH

O

SEt

BnO

>71% • Non-conjugated aldehydes are readily oxidized to the corresponding carboxylic acids in good yields in DMF as solvent. • Primary alcohols are oxidized to the corresponding carboxylic acids in good yields.

O'Connor, B.; Just, G. Tetrahedron Lett. 1987, 28, 3235-3236. Garegg, P. J.; Olsson, L.; Oscarson, S. J. Org. Chem. 1995, 60, 2200-2204.

Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20, 399-402. • PDC has also been used to oxidize alcohols to the corresponding carboxylic acids. • In the following example, PDC was found to be effective while many other reagents led to oxidative C-C bond cleavage.

O

O

O

1. PDC, DMF

CHO

AcO BnO CH3 CH3 CH3

H H

CH3

H3 C

H3C CH3

H3C CH3

TBSO

TBSO OH

H H

PDC, DMF H3 C

CO2H

NH

O

O

CH3

NH 91%

O

CO2CH 3

AcO BnO CH3 CH3 CH3

2. CH 2N2

Kawabata, T.; Kimura, Y.; Ito, Y.; Terashima, S. Tetrahedron 1988, 44, 2149-2165.

78% • However, a suspension of PDC in dichloromethane oxidizes alcohols to the corresponding other oxidants

H3C CH3 O

O

AcO OH BnO CH3 CH3 CH3

aldehyde.

H3C CH3 [O]

O

Ph S O

O

AcO BnO CH3 CH3 O

CH3

Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pilli, R.; Badertscher, U. J. Org. Chem. 1985, 50, 2095-2105.

S

Ph S O

PDC, CH2Cl2

CH2OH 68%

S

CHO

Terpstra, J. W.; van Leusen, A. M. J. Org. Chem. 1986, 51, 230-238.

Mark G. Charest

Aldehyde

Ester

Bromine • Review

Corey-Gilman-Ganem Oxidation

Palou, J. Chem. Soc. Rev. 1994, 357-361.

• A convenient method to convert unsaturated aldehydes directly to the corresponding methyl esters.

• Bromine in alcoholic solvents is a convenient and inexpensive method for the direct conversion of aldehydes into ester derivatives.

• Cis/trans isomerization, a problem when other reagents such as basic silver oxide are employed, is avoided.

• Under the reaction conditions employed, secondary alcohols are not oxidized to the corresponding ketones.

• The aldehyde substrate is initially transformed into a cyanohydrin intermediate. Subsequent oxidation of the cyanohydrin furnishes an acyl cyanide which is then trapped with methanol to give the desired methyl ester.

• Oxidation of a hemiacetal intermediate is proposed.

• Conjugate addition of cyanide ion can be problematic.

• A variety of esters can be prepared.

• Examples

OH

O

O

O

• Examples

OH O

CH3 CH3

O MnO2, CH3CN

O

AcOH, CH3OH

O O

O

CHO NOBn 81%

• Olefins, benzylidine acetals and thioketals are incompatiable with the reaction conditions.

CH3 CH3

H OH H3C

CHO

H3C

NOBn

H OH

O O

O H

Br2, H2O, alcohol

H3C

O

NaHCO3

H3C

O

CO2R H

R = Me, 94% R = Et, 91% R = i-Pr, 80%

OCH3

O

OH OH O Keck, G. E.; Wager, T. T.; Rodriquez, J. F. D. J. Am. Chem. Soc. 1999, 121, 5176-5190.

O

OH NH

O

O H3C

O

Ph

O Br2, H2O, CH3 OH

CHO

O

NaHCO3

O CH3

H3C

89%

Ph CO2CH3

O CH3

(–)-lycoricidine • In the following example, stepwise addition of reagents proved to be essential to achieve high yields. H3C

HO

CH3 O CH3

CH3

1. CH 3CN, AcOH,

H3C

2. MnO2

Lichtenthaler, F. W.; Jargils, P.; Lorenz, K. Synthesis 1988, 790-792.

CH3 TBSO

CH3 OH, 1 h CHO

CH3

Williams, D. R.; Klingler, F. D.; Allen, E. E.; Lichtenthaler, F. W. Tetrahedron Lett. 1988, 29, 5087-5090.

HO

97%

Yamamoto, H.; Oritani, T. Tetrahedron Lett. 1995, 36, 5797-5800.

O CH3

CO2CH3

(2Z, 4E)-xanthoxin

TBSO

O N CO2CH3

Br2 , H2O, CH3OH H

NaHCO3

O N CO2CH3

OCH3

78% Herdeis, C.; Held, W. A.; Kirfel, A.; Schwabenländer, F. Tetrahedron 1996, 52, 6409-6420.

Mark G. Charest

Ketone

Ester • Examples

Bayer-Villiger Oxidation

Krow, G. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 7, p. 671-688.

HO

CH3 O

CH3O

• Reviews

H CO2H CH3

m-CPBA, NaHCO3 O

CH2Cl2

O

O

H

HO

HO H (±)-PGF2α

95%

Krow, G. R. In Organic Reactions, Paquette, L. A., Ed., John Wiley and Sons: New York, 1993, Vol. 43, p. 251-296.

Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675-5677. • A classic method for the oxidative conversion of ketones into the corresponding esters or lactones by oxygen insertion into an acyl C-C bond. • The migratory preference of alkyl groups has been suggested to reflect their electron-releasing ability and steric bulk.

n-C16 H33

• Typically, the order of migratory preference is tertiary > secondary > allyl > primary > methyl. • The reactivity order of Bayer-Villiger oxidants parallels the acidity of the corresponding carboxylic acid (or alcohol): CF3CO3 H > p-nitroperbenzoic acid > m-CPBA = HCO3H > CH3 CO3H > HOOH > t-BuOOH. COR' O O O R'CO3H O –R'CO2H R RL R RL O RL R O H

RL = Large Group

Criegee Intermediate

effect

OCH3

N

O

n-C16H33

m-CPBA, Li2CO3 CH2Cl2

O

99%

O O

O

O

O

Miller, M.; Hegedus, L. S. J. Org. Chem. 1993, 58, 6779-6785. • Selective Bayer-Villiger oxidation in the presence of unsaturated ketones and isolated olefins has been achieved. CH3

H2O2 (anhydrous),

BOMO O H3 C

• Primary and secondary stereoelectronic effects in the Bayer-Villiger reaction have been demonstrated. COR primary O effect O H O • Primary effect: antiperiplanar alignment of RL and σO-O RL R secondary • Secondary effect: antiperiplanar alignment of Olp and σ∗C-RL

Ph OCH3 N

Ph

Ti(Oi-C3H7)4 , ether

H

DIEA, –30 °C H

CH3 BOMO

O

H3 C

O

H

H

O

>55%

O

CH3 AcO Still, W. C.; Murata, S.; Revial, G.; Yoshihara, K. J. Am. Chem. Soc. 1983, 105, 625-627.

Proposed TS

H3 C

O H

O

O

OH OH

O eucannabinolide

Crudden, C. M.; Chen, A. C.; Calhoun, L. A. Angew. Chem., Int. Ed. Engl. 2000, 39, 2852-2855.

• Carbamates have been prepared in some cases.

• The Bayer-Villiger reaction occurs with retention of stereochemistry at the migrating center.

D

O

O

O H

D T

CF3CO3 H Na2HPO4

H D

O

D T

+

H D

Turner, R. B. J. Am. Chem. Soc. 1950, 72, 878-882. Gallagher, T. F.; Kritchevsky, T. H. J. Am. Chem. Soc. 1950, 72, 882-885.

O

CH3 CH3

D

N

T

N O

N CH3

m-CPBA, CH3OH

O

70%

N O CH3

Azizian, J.; Mehrdad, M.; Jadid, K.; Sarrafi, Y. Tetrahedron Lett. 2000, 41, 5265-5268.

Alcohol

Acid

OMOM

OMOM

AcHN

RuO2 (H2O)2, NaIO4

Ruthenium Tetroxide: RuO4 • RuO4 is used to oxidize alcohols to the corresponding carboxylic acid. It is a powerful oxidant that also attacks aromatic rings, olefins, diols, ethers, and many other functional groups. • Catalytic procedures employ 1-5% of ruthenium metal and a stoichiometric oxidant, such as sodium periodate (NaIO4 ). • Sharpless has introduced the use of acetonitrile as solvent to improve catalyst turnover. It is proposed to avoid the formation of insoluble Ru-carboxylate complexes and return the metal to the catalytic cycle.

OH

N Boc

CH3CN, CCl4, H2O 98%

OH

• In the following example, sodium periodate cleaves the 1,2-diol to an aldehyde, which

is further oxidized to the corresponding carboxylic acid by RuO4. The amine is protonated and thereby protected from oxidation. HO H

Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938.

1. RuCl3 -NaIO4, OH

CH3N •HF

• Examples

O

CH3 CN, CCl4 , H2O

OBz

OCH3

CH3N

OBz

2. (CH3)3SiCHN2

CO 2H

CCl4, H2O

N Boc O

Clinch, K.; Vasella, A.; Schauer, R. Tetrahedron Lett. 1987, 28, 6425-6428.

Djerassi, C.; Engle, R. R. J. Am. Chem. Soc. 1953, 75, 3838-3840.

RuCl3 , NaOCl

AcHN

(S)-(+)-cocaine

78% overall

Lee, J. C.; Lee, K.; Cha, J. K. J. Org. Chem. 2000, 65, 4773-4775.

CO 2H

70%

Molecular Oxygen • Molecular oxygen in the presence of a platinum catalyst is a classic method for the oxidation of primary alcohols to the corresponding carboxylic acids.

Sptzer, U. A.; Lee, D. G. J. Org. Chem. 1974, 39, 2468-2469.

• Examples O

RuO2 , NaIO4 CCl4, H2O

O

HO2C

Bn

CO2H

Boc

68% Smith, A. B., III; Scarborough, R. M., Jr. Synth. Commun. 1980, 10, 205-211.

O

O H

R OBz

R = CH3

60%

HO

NH

OH Boc

65%

NH

• Primary alcohols are oxidized selectively in the presence of secondary alcohols.

H

R

CH3 CN, CCl4 , H2 O H

HO

R

RuCl3-NaIO4

Bn

Mehmandoust, M.; Petit, Y.; Larcheveque, M. Tetrahedron Lett. 1992, 33, 4313-4316.

CH3

CH3 R

OH

O2/Pt

OH O

H OBz O

(±)-scopadulcic acid B

OH O

O

HO

OCH3 O

NHPf CH3 CH3

1. O2/Pt 2. CH3I 85%

Pf = 9-phenylfluorenyl Overman, L. E.; Ricca, D. J.; Tran, V. D. J. Am. Chem. Soc. 1997, 119, 12031-12040.

O

CH3O

Park, K. H.; Rapoport, H. J. Org. Chem. 1994, 59, 394-399.

OCH3 O

O

NHPf CH3 CH3

Jones Oxidation

N-Oxoammonium-Mediated Oxidation of Alcohols to Carboxylic Acids • A general method for the preparation of nucleoside 5'-carboxylates:

• Jones reagent is a standard solution of chromic acid in aqueous sulfuric acid. • Acetone is often benefical as a solvent and may function by reacting with any excess oxidant.

O

HO

• Isolated olefins usually do not react, but some olefin isomerization may occur with unsaturated carbonyl compounds.

B

• 1,2-diols and α-hydroxy ketones are susceptible to cleavage under the reaction conditions.

CH3CN, H2O

O

O H3C

CH3

O

O H3C

B = A (90%)

• Examples

B

O

HO2C

TEMPO, PhI(OAc)2

CH3

B = U (76%) O

O CH3

CH3

Jones reagent

B = C (72%, NaHCO3 added) CH3

CH3

B = G (75%, Na salt, NaHCO3 added)

0 °C CH3

Epp, J. B.; Widlanski, T. S. J. Org. Chem. 1999, 64, 293-295.

CH3

85%

CO2H

• A brief follow-up treatment with sodium chlorite was necessary to obtain complete oxidation to the bis-carboxylic acid in the following example.

OH Corey, E. J.; Trybulski, E. J.; Melvin, L. S.; Nicolaou, K. C.; Secrist, J. A.; Lett, R.; Sheldrake, P. W.; Flack, J. R.; Brunelle, D. J.; Haslanger, M. F.; Kim, S.; Yoo, S. J. Am. Chem. Soc. 1978, 100, 4618-4620. • Silyl ethers can be cleaved under the acidic conditions of the Jones oxidation.

OBn O

CF3CONH

O

PivO OTBS

BnO O

CO2CH3

CO2H

BnO

Jones reagent

O

–10 → 23 °C

O

H N

Ph

1. H2, 20% Pd(OH)2-C,

OBn

NH

O

2. PhI(OAc)2, TEMPO CH3CN, NaHCO3, H2O

O N

CO2CH3

EtOAc, EtOH

OPiv

O

O N

88-97%

3. NaClO2, t-BuOH, H2O

CH2OBn

NaH2PO4, isopentene

O

49% overall

Evans, P. A.; Murthy, V. S.; Roseman, J. D.; Rheingold, A. L. Angew. Chem., Int. Ed. Engl. 1999, 38, 3175-3177. HO2C • Ketones have been prepared efficiently by oxidation of the corresponding secondary alcohol. OH O O

H

O O

O

O

CH3

O 1. Jones reagent

H

CH3 2. HCO2H

O

O

3 O

CO2t-Bu

CH3

O

H2N

NH

H

PivO NH3, CH3OH

O N

O NH

CH3

CO2H

O

CF3CONH

OH

O 3

96% overall

HO2C O CO H 2 O

H H

O

O HO

O

H

H2N

55 °C

O CO H 2 O

H N

Ph O

NH

OPiv

O N

NH

65%

O

O

O O

4-desamino-4-oxo-ezomycin A2

(–)-CP-263,114 Waizumi, N.; Itoh, T.; Fukuyama, T. J. Am. Chem. Soc. 2000, 122, 7825-7826.

Knapp, S. K.; Gore, V. K. Org. Lett. 2000, 2, 1391-1393.

Mark G. Charest

α-Hydroxy Ketone

Ketone

• Enantioselective hydroxylation of prochiral ketones has been demonstrated. O

Davis Oxaziridine Ph

• Reviews

O

1. NaHMDS

CH3

2. H3C

Davis, F. A.; Chen, B. Chem. Rev. 1992, 92, 919-934.

OH

Cl N

O S OO

Jones, A. B. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 7, p. 151-191.

CH3

Ph

CH3 Cl

61% (95% ee) • N-Sulfonyloxaziridines are prepared by the biphasic oxidation of the corresponding sulfonimine with m-CPBA or Oxone.

m-CPBA or Oxone

RSO2N=CHR'

RSO2

O N

Davis, F. A.; Chen, B. Chem. Rev. 1992, 92, 919-934.

R'

O

O

THF, –10 °C

O

H

Davis oxaziridine: R = R' = Ph

O

TBDPSO S

H

O

1. KHMDS, HMPA, CH3 OTBS

• Nucleophilic attack by enolates on the electrophilic oxaziridine oxygen furnishes α-hydroxy ketones.

2. –78 °C CH3 H3C

• Examples

O

HO

CH3 CO2 Et

CH3 OH

KHMDS, Davis

O

oxaziridine, THF

taxol

–78 → –20 °C HO 97% at

O

H

O O

HO

H

S

O OCH3 1. NaHMDS

CH3O

O

OCH3

2. H3C

CH3 Cl

CH3 OH

(±)-breynolide

O

57% conversion

CH3 OTBS

OH OH O

Smith, A. B., III; Empfield, J. R.; Rivero, R. A.; Vaccaro, H. A.; Duan, J. J.-W.; Sulikowski, M. M. J. Am. Chem. Soc. 1992, 114, 9419-9434.

CH3 CO2Et

H

S

73% CH3

O

H TBDPSO

O S N OO

• Potassium enolates are generally the most successful.

OH O

CH3O

OH

OCH3

O

OCH3

Wender, P. A.; et al. J. Am. Chem. Soc. 1997, 119, 2757-2758.

H3C

OTBS

KHMDS, Davis oxaziridine, THF

O

H

O

–78 → –20 °C

OTMS

HO

H3C

Cl O S N OO

OTBS

OCH3

CH3O

50% (94% ee) taxol

O

H

O

H

OTMS

OH

68% CH3 O Grandi, M. J. D.; Coburn, C. A.; Isaacs, R. C. A.; Danishefsky, S. J. J. Org. Chem. 1993, 58 7728-7731.

Davis, F. A.; Chen, B. J. Org. Chem. 1993, 58, 1751-1753.

O

(+)-O-trimethylbrazilin

Mark G. Charest

Rubottom Oxidation

Molybdenum peroxy compounds: MoO5•pyr•HMPA O

O O Mo

• Epoxidation of a silyl enol ether and subsequent silyl migration furnishes α-hydroxylated ketones.

O O

• Silyl migration via an oxacarbenium ion has been postulated.

((CH3)2N)3P O N

O • Oxodiperoxymolybdenum(pyridine)hexamethylphosphoramide (MoOPH) is commonly used to oxidize enolates to the corresponding hydroxylated compound.

SiR3

O

SiR3 O

R1

R1

SiR3

+

O

O



R2

OSiR3

R1

R1

R2

• It is proposed that nucleophilic attack of the enolate occurs at a peroxyl oxygen atom, leading to O-O bond cleavage.

O

R2

R2

Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. Tetrahedron Lett. 1974, 4319-4322.

• β-Dicarbonyl compounds are not hydroxylated.

Brook, A. G.; Macrae, D. M. J. Organomet. Chem. 1974, 77, C19-C21.

• Examples

Hassner, A.; Reuss, R. H.; Pinnick, H. W. J. Org. Chem. 1975, 40, 3427-3429.

H3C

OHC OH O H3C

CHO O 1. LDA, THF, –78 °C

O

O

TBDPSO

O

CH3

2. MoOPH O H3C CH3

91%

H3C CH3 Et3SiO

H3 O+

OHC OH H3 C

O

m-CPBA, NaHCO3 H

CH3

O

EtOAc

HO

70%

H 3C

CH3

O

TBDPSO

CH3

H

CH3

CH3

H3C

CHO

Jansen, B. J. M.; Sengers, H.; Bos, H.; de Goot, A. J. Org. Chem. 1988, 53, 855-859. Clive, D. L. J.; Zhang, C. J. Org. Chem. 1995, 60, 1413-1427.

H3 C CH3 (±)-warburganal

O

OTBS O

H3C

H3C H

CH3 1. LDA, THF, –78 °C

H3C H

H C O R1 3 R2

PMBO BOMO

2. MoOPH, –40 °C CH3 O CH3S

S

CH3

CH3 R1 = H, R2 = OH 45% R1 = OH, R2 = H 25%

O

S

dimethyldioxirane

CH3 OTBS OTBS

camphorsulfonic acid

PMBO

OTBS

BOMO

OTBS OTBS

79%

CH3 dimethyldioxirane =

CH3S

Kato, N.; Okamoto, H.; Arita, H.; Imaoka, T.; Miyagawa, H.; Takeshita, H. Synlett. 1994, 337-339.

O O

CH3 CH3

Reddy, K. K.; Saady, M.; Falck, J. R. J. Org. Chem. 1995, 60, 3385-3390.

Mark G. Charest

Diol

Lactone

• Lactols are oxidized selectively. HO

OH

HO

O

• Review

H3 C

O H3C

Fetizon's Reagent • Silver carbonate absorbed on Celite has been found to selectively oxidize primary diols to lactones.

H

CH3

75-85 °C

reflux

• Platinum and oxygen have been used for the selective oxidation of primary alcohols to lactones. H3C

CH3 H

Pt/O2

O

acetone, water

O CH3

HO H3C HO

N

HO H3C

OH 96%

O H3C

O O

>74% (±)-bukittinggine

damsin

O NaBrO2, CH2Cl2 HO

MOMO

OBn

Ag2CO3 on Celite, C6 H6

CH3 OH

CH3 CH3 CH3

O

• TEMPO derivatives have been employed in the preparation of lactones.

• Epimerizable lactones have been prepared.

CH3 O

O

O

Kretchmer, R. A.; Thompson, W. J. J. Am. Chem. Soc. 1976, 98, 3379-3380.

Heathcock, C. H.; Stafford, J. A.; Clark, D. L. J. Org. Chem. 1992, 57, 2575-2585.

OH

CH3

H 3C

77%

H3C

Celite, C6H6

H

Other Methods

OH

N

O H 3C

(+)-mevinolin

Kakis, F. J.; Fetizon, M.; Douchkine, N.; Golfier, M.; Mourgues, P.; Prange, T. J. Org. Chem. 1974, 39, 523-533.

Ag2CO3 on

H3C

Celite, toluene

Clive, D. L. J.; et al. J. Am. Chem. Soc. 1990, 112, 3018-3028.

Fetizon, M.; Golfier, M.; Mourgues, P. Tetrahedron Lett. 1972, 13, 4445-4448.

OH

O

O Ag2CO3 on

H3C

Fetizon, M.; Golfier, M.; Louis, J.-M. J. Chem. Soc., Chem. Commun. 1969, 1102-1118.

CH3

O

O

Procter, G. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 7, p. 312-318.

CH3O

MOMO

OH

OBn

O

NaHCO3 (aq) OBz

H3C

80 °C O

H3C

O H CH3 CH3 CH3

H3 C

75%

N O

CH3 CH3

94% Inokuchi, T.; Matsumoto, S.; Nishiyama, T.; Torii, S. J. Org. Chem. 1990, 55, 462-466.

O

CH3O Coutts, S. J.; Kallmerten, J. Tetrahedron Lett. 1990, 31, 4305-4308.

O

H 3C CH3O

O

• Ru complexes have also been employed.

N H CH3 OCH3 H C 3

H3C O O

CH3 CH3 (±)-macbecin I

H3 C NH2

O

RuH2(PPh3)4, OH OH

PhCH=CHCOCH3 toluene 100%

O H3C CH3

Ishii, Y.; Osakada, K.; Ikariya, T.; Saburi, M.; Yoshikawa, S. J. Org. Chem. 1986, 51, 2034-2039.