maximum entropies copulas - Laboratoire des signaux et systèmes

Σ : covariance matrix, with correlation coefficientρ. Cρ(u, v)=ΦΣ(Φ−1(u), Φ−1(v)). 2 ... The generator ϕ(t) = ln(1 − α ln(t)). Cα(u, v) = uv exp (−α ln u ln v) . D-B.
882KB taille 24 téléchargements 34 vues
MAXIMUM ENTROPIES COPULAS Doriano-Boris Pougaza

&

Ali Mohammad-Djafari

Groupe Probl`emes Inverses Laboratoire des Signaux et Syst`emes (UMR 8506 CNRS - SUPELEC - UNIV PARIS SUD) Sup´elec, Plateau de Moulon, 91192 Gif-sur-Yvette, France. [email protected] http://users.aims.ac.za/~ doriano Chamonix, France, July 4-9, 2010

STATISTICS & TOMOGRAPHY

Tomography : Given two projections horizontal and vertical f1 (x) and f2 (y), find image f (x, y) Statistics : Given two marginals pdfs f1 (x) et f2 (y), find the joint distribution f (x, y)

Two equivalent ill-posed Inverse Problems : Infinite number of solutions

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

2 / 21

Content

1

OVERVIEW ABOUT COPULAS IN STATISTICS

2

MAXIMUM ENTROPIES COPULAS

3

NEW FAMILIES OF COPULAS

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

3 / 21

OVERVIEW ABOUT COPULAS IN STATISTICS

WHAT IS A COPULA ? 1

2

SIMPLE DEFINITION : A copula is a multivariate probability distribution function defined on [0, 1]n whose marginals are uniform. IN THE STATISTICS LITERATURE

copula is a tool to link a multivariate distribution function to its marginal distributions. f (x, y) = f1 (x)f2 (y)Ω(x, y).

3

POWERFUL TOOLS IN MODELING Mostly used in Finance and Environmental Sciences (C. Genest & MacKay, 1986 ; R.M Cooke, 1997 ; P. Embrechts, 2003) Offer several choices to model dependency between variables (H. Joe, 1997 ; R.B. Nelsen, 2006) D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

4 / 21

OVERVIEW ABOUT COPULAS IN STATISTICS

COPULA DEFINITION A bivariate copula C is a function C : [0, 1] × [0, 1] (u, v)

−→ −→

[0, 1] C(u, v)

with the following properties : 1

C(u, 0) = 0 = C(0, v),

2

C(u, 1) = u and C(1, v) = v,

3

C(u2 , v2 ) − C(u2 , v1 ) − C(u1 , v2 ) + C(u1 , v1 ) ≥ 0, for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1 ,

4

C(u, v) ≤ min {u, v} ,

5

C(u, v) ≥ max {u + v − 1, 0} .

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

5 / 21

OVERVIEW ABOUT COPULAS IN STATISTICS

SKLAR’s THEOREM (1959) Let F be a two-dimensional distribution function with marginal distributions functions F1 and F2 . Then there exists a copula C such that :

(1)

F (x, y) = C(F1 (x), F2 (y)).

If the marginal functions are continuous, then the copula C is unique, and is given by C(u, v) = F (F1−1 (u), F2−1 (v)).

(2)

Otherwise C is uniquely determined on Ran (F1 ) × Ran (F2 ) . Conversely for any univariate distribution functions F1 and F2 and any copula C, the function F is a two-dimensional distribution function with marginals F1 and F2 , given by (1). D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

6 / 21

OVERVIEW ABOUT COPULAS IN STATISTICS

DIRECT INVERSION METHOD

f (x, y) = f1 (x)f2 (y)c(F1 (x), F2 (y))

  f F1−1 (u), F2−1 (v)     c(u, v) = f1 F1−1 (u) f2 F2−1 (v)

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

7 / 21

OVERVIEW ABOUT COPULAS IN STATISTICS

ELLIPTICAL COPULAS 1

Gaussian Copula : with one parameter ρ ΦΣ : cdf of bivariate standard Gaussian. Σ : covariance matrix, with correlation coefficientρ

 Cρ (u, v) = ΦΣ Φ−1 (u), Φ−1 (v)

2

Student Copula with two parameters ρ and ν tΣ,ν : cdf of a bivariate Student distribution, Σ : covariance matrix with correlation coefficient ρ, ν : the degree of freedom −1 Cρ,ν (u, v) = tΣ,ν t−1 ν (u), tν (v)

D-B. POUGAZA & al. ()

MAXIMUM & COPULA



MaxEnt 2010

8 / 21

OVERVIEW ABOUT COPULAS IN STATISTICS

ARCHIMEDEAN COPULAS For ϕ a non increasing and convex function, where ϕ(0) = ∞, ϕ(1) = 0 :

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) . Important : Multivariate dependence is captivated by an univariate function. Some examples : 1 Clayton Copula (1978) : with one non-null parameter α ∈ [−1, ∞) The generator ϕ(t) =

1 α

t−α − 1



h  −1 i C(u, v; α) = u−α + v −α − 1 α + 2

Gumbel Copula (1960) : with one parameter 0 < α ≤ 1. The generator ϕ(t) = ln(1 − α ln(t))

Cα (u, v) = uv exp (−α ln u ln v) . D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

9 / 21

MAXIMUM ENTROPIES COPULAS

Maximum Entropies Copulas Problem : Given the two marginals f1 (x) and f2 (y) find the joint pdf f (x, y) Solution : Select the solution which maximizes an entropy Mathematics Z: ZMaximize J1 (f ) = −

f (x, y) ln f (x, y) dx dy,

subject to   C 1     C2      C 3

D-B. POUGAZA & al. ()

Z f (x, y) dy = f1 (x),

∀x

f (x, y) dx = f2 (y), ZZ : f (x, y) dx dy = 1.

∀y

: Z :

MAXIMUM & COPULA

MaxEnt 2010

10 / 21

MAXIMUM ENTROPIES COPULAS

Differents Entropies Expressions

R´enyi, Burg and Tsallis entropies Z Z  1 ln f q (x, y) dx dy , q > 0 and q 6= 1, 1−q ZZ J3 (f ) = ln f (x, y) dx dy,   ZZ 1 q J4 (f ) = 1− f (x, y) dx dy q > 0 and q 6= 1. 1−q J2 (f ) =

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

11 / 21

MAXIMUM ENTROPIES COPULAS

Lagrange Multipliers Technique

  ZZ L(f, λ0 , λ1 , λ2 ) = Ji (f ) + λ0 1 − f (x, y)dxdy   Z Z + λ1 (x) f1 (x) − f (x, y)dy dx   Z Z + λ2 (y) f2 (y) − f (x, y)dx dy, Solution  ∂L/∂f = 0    ∂L/∂λ = 0 0  ∂L/∂λ 1 =0    ∂L/∂λ2 = 0.

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

12 / 21

MAXIMUM ENTROPIES COPULAS

Shannon’s Entropy

f (x, y) = f1 (x)f2 (y) f (x1 , . . . , xn ) =

n Y

fi (xi )

i=1

Z F (x1 , . . . , xn ) =

Z ...

0

D-B. POUGAZA & al. ()

x1

0

n xn Y

fi (si )

i=1

MAXIMUM & COPULA

n Y

dsi ,

0 ≤ xi ≤ 1.

i=1

MaxEnt 2010

13 / 21

MAXIMUM ENTROPIES COPULAS

Tsallis’ entropy index q = 2 Pdf : f (x, y) = [f1 (x) + f2 (y) − 1]+ . " n # X f (x1 , . . . , xn ) = fi (xi ) − n + 1 i=1

+

Cdf : Z

x

Z

0

0

F (x, y) = y F1 (x) + x F2 (y) − x y, F (x1 , . . . , xn ) =

n X i=1

D-B. POUGAZA & al. ()

Fi (xi )

n Y

xj + (1 − n)

j=1 j6=i

MAXIMUM & COPULA

y

f (s, t) ds dt

F (x, y) =

0 ≤ x, y ≤ 1. n Y

xi ,

0 ≤ xi ≤ 1.

i=1

MaxEnt 2010

14 / 21

NEW FAMILIES OF COPULAS

Direct Inversion Method Given the expressions of F (x, y) and F1 (x), F2 (y), the expressions of copula becomes :   C(u, v) = u F2−1 (v) + v F1−1 (u) − F1−1 (u) F2−1 (v) + Multivariate case : 



n X

 C(u1 , . . . , un ) =  

D-B. POUGAZA & al. ()

i=1

ui

n Y

Fj−1 (uj ) + (1 − n)

j=1 j6=i

MAXIMUM & COPULA

n Y i=1

 Fi−1 (ui )  +

MaxEnt 2010

15 / 21

NEW FAMILIES OF COPULAS

Beta Distribution Marginals One great family of distributions defined on [0, 1] : f1 (x) =

1 xa1 −1 (1 − x)b1 −1 B(a1 , b1 )

f2 (y) =

1 y a2 −1 (1 − y)b2 −1 , B(a2 , b2 )

where Z B(ai , bj ) =

1

tai −1 (1 − t)bj −1 dt, 0 ≤ x, y ≤ 1 and ai , bj > 0 .

0

Interesting particular cases : case 1 : ai > 0 , bj = 1 case 2 : ai = bj = 1/2 D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

16 / 21

NEW FAMILIES OF COPULAS

New Families of copulas case 1 : ai > 0 , bj = 1 ( 1 f1 (x) = a1 xa1 −1 → F1 (x) = xa1 → F1−1 (u) = u a1

)

1

f2 (y) = a2 y a2 −1 → F2 (y) = y a2 → F2−1 (v) = v a2 F (x, y; a1 , a2 ) = y xa1 + x y a2 − x y,

0 ≤ x, y ≤ 1.

The corresponding copula : 1

1

1

1

C(u, v; a1 , a2 ) = u v a2 + v u a1 − u a1 v a2 is well defined for appropriate values of a1 , a2 and for almost u, v in [0, 1]. 1 If a1 = a2 = , a C(u, v; a) = (u v)a (u1−a ⊗1 v 1−a ) 1

where u ⊗a v = [ua + v a − 1] a is the generalized product. D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

17 / 21

NEW FAMILIES OF COPULAS

New Families of copulas Case 2 : ai = bj = 1/2  √ 2 1   → F1 (x) = arcsin( x) → F1−1 (u) = sin2 ( π2 u) f1 (x) = p π π x(1 − x) 1 2 √   → F2 (y) = arcsin( y) → F2−1 (v) = sin2 ( π2 v) f2 (y) = p π π y(1 − y) √ 2x 2y √ arcsin( x) + arcsin( y) − x y, π π The corresponding copula : F (x, y) =

C(u, v) = u sin2 (

      

0 ≤ x, y ≤ 1.

πv πu πu πv ) + v sin2 ( ) − sin2 ( ) sin2 ( ) 2 2 2 2

is well defined for all u, v in [0, 1]. D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

18 / 21

CONCLUSION

New families of copula, other examples are in investigation Link betwen copula & Tomography Shannon : f (x, y) = f1 (x)f2 (y) : Multiplicative Backprojection Tsallis : f (x, y) = [f1 (x) + f2 (y) − 1]+ : Backprojection Method

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

19 / 21

Thanks to Dr. Durante Fabrizio Pr. Christian Genest Dr. Jean-Fran¸cois Bercher Pr. Christophe Vignat

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

20 / 21

BIBLIOGRAPHY

Link between Copula and Tomography Pattern Recognition Letters, Elsevier, 2010. D-B. Pougaza , A. Mohammad-Djafari & J-F. Bercher Utilisation de la notion de copule en tomographie GRETSI 2009, Dijon France. D-B. Pougaza , A. Mohammad-Djafari & J-F. Bercher Copula and Tomography VISSAP 2009 , Lisbon, Portugal. A. Mohammad-Djafari & D-B. Pougaza Fonctions de r´epartition ` a n dimensions et leurs marges Publications de l’Institut de Statistique de L’Universit´e de Paris 8, 1959 Abe Sklar

D-B. POUGAZA & al. ()

MAXIMUM & COPULA

MaxEnt 2010

21 / 21