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P5650/Jun08/MFP2 6/6/6/



MFP2



2



Answer all questions.



1



(a) Express 5 sinh x þ cosh x in the form Ae x þ Bex , where A and B are integers.



(2 marks)



(b) Solve the equation 5 sinh x þ cosh x þ 5 ¼ 0 giving your answer in the form ln a , where a is a rational number.



2



(4 marks)



(a) Given that 1 A B ¼ þ rðr þ 1Þðr þ 2Þ rðr þ 1Þ ðr þ 1Þðr þ 2Þ 1



show that A ¼ 2 and find the value of B.



(3 marks)



(b) Use the method of differences to find 98 X



1 rðr þ 1Þðr þ 2Þ r¼10 giving your answer as a rational number.
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(4 marks)



3



3 The cubic equation z 3 þ qz þ ð18  12iÞ ¼ 0 where q is a complex number, has roots a , b and g . (a) Write down the value of: (i) abg ;



(1 mark)



(ii) a þ b þ g .



(1 mark)



(b) Given that b þ g ¼ 2 , find the value of: (i) a ;



(1 mark)



(ii) bg ;



(2 marks)



(iii) q.



(3 marks)



(c) Given that b is of the form ki , where k is real, find b and g .
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(4 marks)



(a) A circle C in the Argand diagram has equation jz þ 5  ij ¼



pﬃﬃﬃ 2



Write down its radius and the complex number representing its centre.



(2 marks)



(b) A half-line L in the Argand diagram has equation argðz þ 2iÞ ¼



3p 4



Show that z1 ¼ 4 þ 2i lies on L. (c)



(i) Show that z1 ¼ 4 þ 2i also lies on C.



(2 marks) (1 mark)



(ii) Hence show that L touches C.



(3 marks)



(iii) Sketch L and C on one Argand diagram.



(2 marks)



(d) The complex number z2 lies on C and is such that argðz2 þ 2iÞ has as great a value as possible. Indicate the position of z2 on your sketch.



(2 marks)
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Turn over
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5



1



(a) Use the definition cosh x ¼ 2ðe x þ ex Þ to show that cosh 2x ¼ 2 cosh2 x  1 . (b)



(2 marks)



(i) The arc of the curve y ¼ cosh x between x ¼ 0 and x ¼ ln a is rotated through 2p radians about the x-axis. Show that S, the surface area generated, is given by ð ln a



cosh2 x dx



(3 marks)



  a4  1 S ¼ p ln a þ 4a 2



(5 marks)



S ¼ 2p



0



(ii) Hence show that



6 By using the substitution u ¼ x  2 , or otherwise, find the exact value of ð5



dx pﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃ 1 32 þ 4x  x 2
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(a) Explain why nðn þ 1Þ is a multiple of 2 when n is an integer. (b)



(5 marks)



(1 mark)



(i) Given that f ðnÞ ¼ nðn 2 þ 5Þ show that f ðk þ 1Þ  f ðkÞ , where k is a positive integer, is a multiple of 6 . (4 marks) (ii) Prove by induction that f ðnÞ is a multiple of 6 for all integers n 5 1 .
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(4 marks)



5



8



(a)



(i) Expand 



  1 1 zþ z z z



(1 mark)



(ii) Hence, or otherwise, expand 



(b)



   1 4 1 2 zþ z z z



(3 marks)



(i) Use De Moivre’s theorem to show that if z ¼ cos y þ i sin y then 1 z n þ n ¼ 2 cos ny z 1 (ii) Write down a corresponding result for z n  n . z



(3 marks) (1 mark)



(c) Hence express cos4 y sin2 y in the form A cos 6y þ B cos 4y þ C cos 2y þ D where A, B, C and D are rational numbers. ð (d) Find cos4 y sin2 y dy .



END OF QUESTIONS
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(4 marks) (2 marks)



AQA – Further pure 2 – Jun 2008 – Answers Question 1:



Exam report



5 x −x 1 x −x (e − e ) + 2 (e + e ) 2 5 1 5 1 = e x + e x − e− x + e− x 2 2 2 2 x −x 5sinh x + cosh x = 3e − 2e



a ) 5sinh x + cosh x =



0 becomes b) 5sinh x + cosh x + 5 = −x 3e x − 2e= +5 0



(×e x )



3e 2 x − 2 + 5e x = 0 3e 2 x + 5e x − 2 = 0 (3e x − 1)(e x + 2) = 0 1 = ex or e x = −2 (no solution) 3 1 x = ln   3 Question 2:



A B A(r + 2) + Br ( A + B)r + 2 A + = = r (r + 1) (r + 1)(r + 2) r (r + 1)(r + 2) r (r + 1)(r + 2) 1 for This expression is equal to r (r + 1)(r + 2) 1 1 A = and B = − 2 2 98 98 1 1 1 − b) ∑ = ∑ r (r + 1)(r + 2) r 10 2r (r + 1) 2(r + 1)(r + 2) r 10= 1 1 1 1 1 1 = − + − + − + 220 264 264 312 312 364 1 1 1 1 − + − ... + 19012 19404 19404 19800 89 1 1 − = All the terms cancel except 220 19800 19800



Exam report



Question 3:



Exam report



0 has roots α , β , γ z + qz + 18 − 12i = a ) i ) αβγ = −18 + 12i 0 ii ) α + β + γ = 2 b) β + γ = 3



0 i) α + β + γ = 0 α +2= α = −2 ii ) αβγ = −18 + 12i − 2 βγ = −18 + 12i



βγ = 9 − 6i iii ) q = αβ + αγ + βγ = α ( β + γ ) + βγ q =−2 × (2) + 9 − 6i =5 − 6i c) β



ki and it is a root = of z 3 + qz + 18 − 12i 0



so (ki )3 + (5 − 6i ) × (ki ) + 18 − 12i = 0 0 − ik 3 + 5ki + 6k + 18 − 12i = (6k + 18) + i (−k 3 + 5k − 12) = 0 6k += 18 0 and − k 3 + 5k −= 12 0 k =−3 and − (−3)3 + 5 × −3 − 12= 27 − 15 − 12 = 27 − 27= 0 2 β= 2 + 3i so α = −2, β = −3i , γ =− Question 4:



Exam report



a) z + 5 − i = 2 Let z A = −5 + i and A( z A ) C is the circle centre A, radius r = 2 b) arg( z + 2i= ) arg(−4 + 2i + 2i= ) arg(−4 + 4i ) 3π  4  −1 Tan −1  = 1)  Tan (−= 4  −4  −4 + 2i lies on L z= 1 c) i ) −4 + 2i + 5 − i = 1 + i = (1) 2 + (1) 2 = 2 z1 lies on C ii ) L touches (is tangent to ) C if L is perpendicular to the radius arg( z1 − z A= ) arg (1 + i= )



π



3π arg ( z1 + 2i ) = 4



4



3π π π − = 4 4 2 L is perpendicular to the radius, L is tangent to the circle C. arg ( z1 + 2i ) − arg( z1 − z A ) =



Question 4:continues



Exam report



Question 5:



Exam report



1 x −x (e + e ) 2 1 x − x 2 1 2 x −2 x cosh 2 x = ( e + e ) = 4 ( e + e + 2) 4 1 1 1 cosh 2 x = × (e 2 x + e −2 x ) + 2 2 2 1 1 = cosh 2 x cosh 2 x + 2 2 2 cosh 2 x = 2 cosh x − 1



= a ) cosh x



= b)i ) S 2π ∫



ln a



0



2



ln a  dy  2 y 1+  =  dx 2π ∫0 cosh x × 1 + sech xdx  dx 



= S 2π ∫



ln a



ii ) S = 2π ∫



ln a



0



cosh x × cosh xdx = 2π ∫



ln a



0



0



cosh 2 x dx ln a



1 1 1  1 + dx 2π  sinh 2 x + x  cosh 2 x= 2 2 2 0 4 1 1  = 2π  sinh(2 ln a ) + ln a − 0  4 2  



(



)



2 2 1  1 1  S = π  sinh(ln a 2 ) + ln a  = π  × eln a − e − ln a + ln a  2  2 2  4  a −1  1  1  + ln a  = S π   a 2 − 2  + ln= a π  2 a  4   4a 



Question 6: I =∫



5



−1



Exam report dx



32 + 4 x − x 2 32 + 4 x − x 2 =−( x − 2) 2 + 4 + 32 = 36 − ( x − 2 )



5 5 dx dx I= ∫−1 32 + 4 x − x 2 = ∫−1 36 − ( x − 2)2



2



u= x − 2 and dx = du when x = −1, u = −3 when= x 5,= u 3



I =∫



3



−3



3



  u  1  1 π π π =  Sin −1    = Sin −1   − Sin −1  −  = + =  6   −3 2  2 6 6 3  36 − u du



2



Question 7:



a ) n and n + 1 are CONSECUTIVE numbers so one of them is EVEN



Exam report



therefore n(n + 1) is a multiple of 2 b) i ) f= (n) n(n 2 + 5) f (k + 1) − f (k ) = (k + 1)((k + 1) 2 + 5) − k (k 2 + 5) = (k + 1) ( k 2 + 2k + 1 + 5 ) − k (k 2 + 5) = (k + 1)(k 2 + 2k + 6) − k (k 2 + 5) = k 3 + 2 k 2 + 6 k + k 2 + 2 k + 6 − k 3 − 5k = 3k 2 + 3k + 6 = 3(k + 1)(k + 2) (k + 1)(k + 2) is a multiple of 2 so f (k + 1) − f (k ) is a multiple of 6 ii) Proposition Pn , for all n ≥ 1, f (n) is a multiple of 6 is to be proven by induction base case: n = 1 = f (1) 1= × (12 + 5) 6 which is a multiple of 6. P1 is true. Let's suppose that for n = k , f (k ) is a multiple of 6 Let's sahow that f (k + 1) is then a multiple of 6. −−−−−−−−−−−−−−−−−−−−−−−−−− f (k + 1) = 3(k + 1)(k + 2) − f (k ) 3(k + 1)(k + 2) is a multiple of 6 f (k ) is a multiple of 6 (by hypothesis) so f (k + 1) is a multiple of 6 −−−−−−−−−−−−−−−−−−−−−−−−−− Conclusion: If Pk is true then Pk +1 is true. because P1 is true, we can conclude according to the induction principle that the proposition is true for all n ≥ 1. Question 8: 1  1 1 1  a) i)  z +   z −  = z 2 − 1 + 1 − 2 = z 2 − 2 z  z z z 



1  1 1   1  1    ii )  z +   z −  = z +  ×  z +   z −   z  z z   z  z    4



2



2



2



1 1   =  z2 + 2 + 2   z2 − 2  z z    1 1    =  z2 + 2 + 2   z4 + 4 − 2  z z    1 1 2 2 = z6 + 2 − 2z2 + z2 + 6 − 2 + 2z4 + 4 − 4 z z z z 1  1  1  =  z6 − 6  −  z2 + 2  + 2  z4 + 4  − 4 z   z   z  



Exam report



2



Question 8:continues



Exam report



1 b)i ) z n + = ( cos nθ + i sin nθ ) + ( cos nθ − i sin nθ=) 2 cos nθ zn 1 ii ) z n − = θ ) 2i sin nθ ( cos nθ + i sin nθ ) − ( cos nθ − i sin n= zn 4 2  1  1   1  1  c) cos 4 θ sin 2 θ =+ z z −  4       z    ( 2i )2  z   2  4



1  1  1 = − z+  z−  64  z  z



2



1  1  1  1  = −  z 6 − 6  −  z 2 + 2  + 2  z 4 + 4  − 4  64  z   z   z   1 = − ( 2 cos 6θ − 2 cos 2θ + 4 cos 4θ − 4 ) 64 1 1 1 1 = − cos 6θ − cos 4θ + cos 2θ + 32 16 32 16 1 1 1 1 d ) ∫ cos 4 θ sin 2 θ dθ = ∫ − 32 cos 6θ − 16 cos 4θ + 32 cos 2θ + 16dθ 1 1 1 1 =− sin 6θ − sin 4θ + sin 2θ + θ + c 192 64 64 16
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Key to mark scheme and abbreviations used in marking M m or dM A B E or ft or F CAO CSO AWFW AWRT ACF AG SC OE A2,1 –x EE NMS PI SCA



mark is for method mark is dependent on one or more M marks and is for method mark is dependent on M or m marks and is for accuracy mark is independent of M or m marks and is for method and accuracy mark is for explanation follow through from previous incorrect result correct answer only correct solution only anything which falls within anything which rounds to any correct form answer given special case or equivalent 2 or 1 (or 0) accuracy marks deduct x marks for each error no method shown possibly implied substantially correct approach



MC MR RA FW ISW FIW BOD WR FB NOS G c sf dp



mis-copy mis-read required accuracy further work ignore subsequent work from incorrect work given benefit of doubt work replaced by candidate formulae book not on scheme graph candidate significant figure(s) decimal place(s)



No Method Shown Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme. Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks. Where a question asks the candidate to state or write down a result, no method need be shown for full marks. Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks. Otherwise we require evidence of a correct method for any marks to be awarded.
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MFP2 Q 1(a)



(b)



Solution ⎞ ⎛ ex + e– x ⎞ ⎟ +⎜ ⎟ 2 ⎠ ⎠ ⎝



Marks



⎛e –e 5⎜ 2 ⎝ = 3e x – 2e – x x



–x



M1



A1



( 3e



x



M0 if no 2s in denominator



2



M1



–1)( e + 2 ) = 0 x



e ≠ –2 1 ex = 3



E1



1 x = ln 3



A + B = 0,



A=



A1F Total



1 = A ( r + 2 ) + Br 2 A = 1,



ft if 2s missing in (a)



A1F



x



(b)



Comments



3e x – 2e – x + 5 = 0 3e 2 x + 5e x − 2 = 0



2(a)



Total



4



provided quadratic factorises into real factors



6



M1



1



A1



2



B=–



any indication of rejection



1



A1



2



3



1⎛ 1 1 ⎞ – ⎜ ⎟ 2 ⎝ 10.11 11.12 ⎠ 1⎛ 1 1 ⎞ r = 11 – ⎜ ⎟ 2 ⎝ 11.12 12.13 ⎠ . . . . . . .



if (a) is incorrect but A =



r = 10



1 2



and B = –



2



used, allow full marks for (b)



1⎛ 1 1 ⎞ – ⎜ ⎟ 2 ⎝ 98.99 99.100 ⎠ 1⎛ 1 1 ⎞ S= ⎜ – ⎟ 2 ⎝ 10.11 99.100 ⎠



M1A1



r = 98



3 relevant rows seen



if split into



m1



1 1 1 – + , follow 2r r + 1 2 ( r + 2 )



mark scheme, in which case 1 1 1 1 – + – scores m1 2.10 2.11 2.100 2.99 =



1



89 19800



A1



Total



4



7



4
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MFP2 (cont) Q Solution 3(a)(i) αβγ = – 18 + 12i (ii) (b)(i)



Marks B1



Total 1



α + β +γ =0



B1



1



α = –2



B1F



1



M1 A1F



2



(ii)



βγ =



(iii)



q=



(c)



αβγ = 9 – 6i α



∑αβ = α (β + γ ) + βγ



M1



= –2 × 2 + 9 – 6i = 5 – 6i



A1F A1F



β = ki, γ = 2 − ki



(k



2



= 9)



ft sign errors in (a) or (b)(i) or slips such as miscopy



ft incorrect βγ or α 3



B1 M1



ki ( 2 – ki ) = 9 – 6i 2k = –6



Comments accept − (18 – 12i )



k = –3



m1



β = –3i, γ = 2 + 3i



A1 Total



5



imaginary parts 4 12
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MFP2 (cont) Q 4(a)



(b)



radius



2



Marks



Total



centre − 5+i



B1,B1



2



arg ( z1 + 2i ) = arg ( –4 + 4i ) =



(c)(i)



Solution



Comments condone (−5, 1) for centre



do not accept ( –5, i )



M1



3π 4



z1 + 5 – i = 1 + i = 2



A1



2



B1



1



⎛ 1⎞ clearly shown eg tan −1 ⎜ – ⎟ ⎝ 1⎠



(ii) Gradient of line from



( –5, 1) to ( –4, 2 ) is 1



⎛π⎞ ⎜ ⎟ ⎝4⎠



M1A1



radius ⊥ line ∴ tangent



E1



M1 for a complete method 3



(iii)



(d)



Circle correct



B1F



Half line correct



B1



z2 in correct place



B1



with tangent shown



B1 Total



6



ft incorrect centre or radius 2



line must touch C generally above the circle B0 if z2 is directly below the centre of C



2 12
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MFP2 (cont) Q 5(a)



(b)(i)



Solution



(ex + e )



–x 2



Marks



Total



e 2 x + 2e0 + e –2x is acceptable



B1



expanded correctly



Result



B1



dy = sinh x dx



B1



Comments



2



AG



2



⎛ dy ⎞ 1 + ⎜ ⎟ = 1 + sinh 2 x ⎝ dx ⎠ = cosh x S = 2π ∫



(ii)



ln a 0



cosh 2 x dx



Use of cosh 2 x =



use of cosh 2 x – sinh 2 x = 1



M1 A1



1 (1 + cosh 2 x ) 2



3



AG (clearly derived) allow one slip in formula M0 if ∫ cosh 2 x dx is given as sinh 2 x



M1



ln a



⎡ 1 ⎤ S = π ⎢ x + sinh 2 x ⎥ ⎣ 2 ⎦0 2ln a ⎡ 1⎛e – e –2ln a ⎞ ⎤ = π ⎢ ln a + ⎜ ⎟⎥ 2⎝ 2 ⎠ ⎦⎥ ⎣⎢ 1 ⎡ ⎤ = π ⎢ ln a + a 2 – a –2 ⎥ 4 ⎣ ⎦ 1 ⎡ ⎤ = π ⎢ ln a + a 4 –1 ⎥ 2 4a ⎣ ⎦



(



A1 M1



)



(



A1F



)



A1



Total 6



5



AG



10



u=x–2 du = dx or



du =1 dx



du 2



= sin –1



36 – u limits −3 and 3



u 6



or substitute back to give sin –1 I=



clearly seen



B1



if 32 + 4 x – x 2 is written as 36 – ( x – 2 ) , give B2



M1



allow if dx is used instead of du



2



32 + 4 x – x 2 = 36 – u 2



∫



B1



x–2 6



A1



π π π + = 6 6 3



A1



Total



5



5



7
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MFP2 (cont) Q Solution 7(a) Clear reason given (b)(i)



Marks E1



2 ( k + 1) ( ( k + 1) + 5) – k ( k 2 + 5)



Total 1



Comments Minimum O × E = E



M1



= 3k 2 + 3k + 6 k 2 + k = k ( k + 1) = M ( 2 )



A1



Must be shown



E1



f ( k + 1) – f ( k ) = M ( 6 )



E1



(ii) Assume true for n = k f ( k + 1) – f ( k ) = M ( 6 )



M1



4



Clear method



∴ f ( k + 1) = M ( 6 ) + f ( k )



= M (6) + M ( 6)



A1



= M ( 6) True for n = 1 P ( n ) → P ( n + 1) and P (1) true



B1 E1



Total



8



4 9



Provided all other marks earned in (b)(ii)
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MFP2 (cont) Q 8(a)(i)



Solution 1 ⎞⎛ 1⎞ 1 ⎛ 2 ⎜ z + ⎟⎜ z – ⎟ = z – 2 z ⎠⎝ z⎠ z ⎝ 2



(ii)



(b)(i)



zn +



zn



B1



1



Comments



Alternatives for M1A1: 4 1 ⎞⎛ 2 1⎞ ⎛ 4 2 ⎜ z + 4 z + 6 + 2 + 4 ⎟⎜ z − 2 + 2 ⎟ or z z ⎠⎝ z ⎠ ⎝ 2 2 1⎞ ⎛ 1⎞ ⎛ 3 1⎞ ⎛ 3 1 ⎞⎛ − − − − + − z 2 z z z ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ z3 ⎠ z 3 ⎠⎝ z⎠ ⎝ z⎠ ⎝ ⎝



M1A1



1 1 ⎞ ⎛ 1 ⎞ ⎛ + 2⎜ z4 + 4 ⎟ − ⎜ z2 + 2 ⎟ − 4 6 z z ⎠ ⎝ z ⎠ ⎝



1



Total



2



1⎞ ⎛ 2 1 ⎞ ⎛ ⎜z – 2 ⎟ ⎜z+ ⎟ z⎠ z ⎠ ⎝ ⎝ 1 ⎞⎛ 1 ⎞ ⎛ = ⎜ z 4 – 2 + 4 ⎟⎜ z 2 + 2 + 2 ⎟ z ⎠⎝ z ⎠ ⎝



= z6 +



Marks



= cos nθ + isin nθ + cos ( – nθ ) + isin ( – nθ )



= 2cos nθ



A1



3



CAO (not necessarily in this form)



3



AG SC: if solution is incomplete and –n ( cosθ + isin θ ) is written as



M1A1 A1



cos nθ – isin nθ , award M1A0A1 (ii)



z n – z – n = 2isin nθ



B1



LHS = −64cos 4 θ sin 2 θ



M1 A1F M1



cos 4 θ sin 2 θ 1 1 1 1 = − cos 6θ – cos 4θ + cos 2θ + 32 16 32 16



A1



(c) RHS = 2cos 6θ + 4cos 4θ – 2cos 2θ − 4



(d)



−



sin 6θ sin 4θ sin 2θ θ (+ k ) − + + 192 64 64 16



M1 A1F



Total TOTAL



9



1 ft incorrect values in (a)(ii) provided they are cosines



4



2 14 75



ft incorrect coefficients but not letters A, B, C, D
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