

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Lean Software Development

... the time, twice the cost. Clark & Fujimoto, Product Development Performance, 1991 Develop a sense of when to make decisions. Keep Options Open ...

 Télécharger le PDF

 3MB taille
 1 téléchargements
 345 vues

 commentaire

 Report

Lean Software Development An Agile Toolkit Mary Poppendieck www.poppendieck.com

The Toyota Production System “

Approach to Production “ “ “

“

Taiichi Ohno

Build only what is needed (1912-1990) Stop if something goes wrong Eliminate anything which does not add value

Philosophy of Work “ “ “

Respect for Workers Full utilization of workers’ capabilities Entrust workers with responsibility & authority

March, 2003

Copyrignt©2003 Poppendieck.LLC

2

Changing the Mental Model Setup Time

Cost of Change Received Knowledge

Agile

“

“

Received Knowledge:

T im e

“

Received Knowledge:

“

Die Change is Expensive

“

Code Change is Expensive

“

Don’t Change Dies

“

Freeze Design Before Code

Taiichi Ohno

“

The Agile Imperative

“

Economics Requires Many Dies Per Stamping Machine

“

Economics Requires Frequent Change In Evolving Domains

“

One Minute Die Change

“

Last Responsible Moment

March, 2003

Copyrignt©2003 Poppendieck.LLC

3

Concurrent Engineering “

1981 – GM Starts the G-10 Project “ “

“

1986 – Honda Starts the New Accord Project “ “

“

1988 – Buick Regal “ 2 Years Late 1989 – Olds Cutlass & Pontiac Grand Prix 1989 – Introduced as 1990 model 1990’s – Largest-selling model in North America

A New Mental Model “

Instead of “ “

“

Haste Makes Waste Quality Costs More

We know “ “

Delay Makes Waste Quality Saves

The Machine That Changed The World, Womack, 1990 March, 2003

Copyrignt©2003 Poppendieck.LLC

4

Stamping Dies Toyota

Typical US

“

Mistakes very expensive

“

Mistakes very expensive

“

Never-ending changes

“

Never-ending changes

“

Early Design – Early Cut

“

Wait to Design – Wait to Cut

“

Focus: Reduce Time

“

Focus: Reduce Waste

“

Designer goes to supplier shop, discusses changes, implements immediately, submits for later approval

“

Designer must get multiple signatures for changes, sends to purchasing which sends change document to vendor

“

Target cost (including changes)

“

Fixed cost (changes are extra, profit source for supplier)

“

10-20% cost for changes

“

30-50% cost for changes

“

Half the time, half the cost

“

Twice the time, twice the cost

Clark & Fujimoto, Product Development Performance, 1991 March, 2003

Copyrignt©2003 Poppendieck.LLC

5

Concurrent Software Development Why are we doing this?

Domain Context

Communication

What needs to be done?

How do we build it?

Time March, 2003

How do we support it? Copyrignt©2003 Poppendieck.LLC

6

Principles of Lean Thinking 1. 2. 3. 4. 5. 6. 7.

Eliminate Waste Increase Feedback Delay Commitment Deliver Fast Build Integrity In Empower the Team See the Whole

Principle 1: Eliminate Waste “ Waste “ Anything

that does not create value for the customer “ The customer would be equally happy with the software without it “ Prime

Directive of Lean Thinking

“ Create

Value for the customer “ Improve the Value Stream

March, 2003

Copyrignt©2003 Poppendieck.LLC

8

Seeing Waste Seven Wastes of Manufacturing*

Seven Wastes of Software Development

Inventory

Partially Done Work

Extra Processing

Paperwork

Overproduction

Extra Features

Transportation

Building the Wrong Thing

Waiting

Waiting for Information

Motion

Task Switching

Defects

Defects

* Shigeo Shingo, an engineer at Toyota and a noted authority on just-in-time techniques. March, 2003

Copyrignt©2003 Poppendieck.LLC

9

The biggest source of waste Features and Functions Used in a Typical System Often or Always Used: 20%

Sometimes 16%

Rarely 19%

Never 45%

Often 13% Always 7% Standish Group Study Reported at XP2002 by Jim Johnson, Chairman

March, 2003

Copyrignt©2003 Poppendieck.LLC

Rarely or Never Used: 64%

10

Traditional Value Stream

“

Total Time: ~55 weeks “

Work Time ~17.6 weeks “ 1/3rd

“

of the time

Wait Time ~37 Weeks “

2/3rds of the time

“

Bottlenecks: “ “ “ “ “

March, 2003

Copyrignt©2003 Poppendieck.LLC

Approvals Sign Offs Design Review Testing Deployment

11

Lean Value Stream Total Time: ~17 weeks “

Work Time ~14.2 weeks “

“

84% of the time

Levers: “ “

Concurrent Development Effective Gating Process

Wait Time ~2.8 Weeks “

16% of the time

March, 2003

Copyrignt©2003 Poppendieck.LLC

12

Exercise “ Choose

a system you know about

“ Estimate

% of the features are always or often used

“ Choose

a development cycle you are familiar with “ Estimate

the average it takes to convert customer requests into deployed software Submit Request

March, 2003

What is the Average Cycle Time

Copyrignt©2003 Poppendieck.LLC

Deploy Code

13

Principles of Lean Thinking 1. 2. 3. 4. 5. 6. 7.

Eliminate Waste Increase Feedback Delay Commitment Deliver Fast Build Integrity In Empower the Team See the Whole

Principle 2: Increase Feedback Car Set Speed 60 mph

Comparison

Throttle Speed Sensor

Cruise Control

Customer

Current Business Needs

Developer

Current Design Intent

System

Comparison

Software Development March, 2003

Copyrignt©2003 Poppendieck.LLC

Code

Current System Capability

15

The fundamental Practice “

“

Waterfall Doesn’t Work!

A simplistic but inferior idea, similar to medicine’s “four humors”.*

Iterative Incremental Development Works!

Recommended by software engineering thoughtleaders, associated with numerous successful large projects & recommended by standards boards.*

* Craig Larman, “A History of Iterative and Incremental Development”, IEEE Computer, June 2003

March, 2003

Copyrignt©2003 Poppendieck.LLC

16

Simple Rules of Iteration “

Business Sets Priority “

“

Development Team Determines Effort “

“

Drop features to meet the deadline

Deliver on Commitment “

“

Team chooses and commits to iteration goal

Use a Short Time Box “

“

Minimum Marketable Features (MMF)

Develop Confidence

Create Business Value “

Potentially Deployable Code

March, 2003

Copyrignt©2003 Poppendieck.LLC

17

Minimum Marketable Features (MMF)

Profit

Payback

Cost

Investment

Deploy Early & Often – Move Profit Forward

Breakeven Software by Number by Mark Denne and Jane Cleland-Huang

Self-Funding Time March, 2003

Copyrignt©2003 Poppendieck.LLC

18

for Troubled Projects “

Increase Feedback ! “ “ “ “

“

Customer Feedback to Team Team Feedback to Management Product Feedback to Team Upstream-Downstream Feedback

Don’t Decrease Feedback “

Adding Yet More Process Rarely Helps

March, 2003

Copyrignt©2003 Poppendieck.LLC

19

Principle 3: Delay Commitment “ The

technology changes rapidly “ The business situation evolves “ Software will change! “ Software

products

Improve with age “ Architecture is expected to change over time “

“ Custom

software

Becomes brittle with age “ Architecture is not expected to change “ But 60-70% of software development occurs after initial release to production “

March, 2003

Copyrignt©2003 Poppendieck.LLC

20

Cost Escalation Two Kinds of Change “

High Stakes Constraints “

Examples: z z z z z

“

Rule: z z

“

Language Layering Usability Security Scalability Only a Few At a High Level

Most Changes “

March, 2003

Keep the Cost Low!

Copyrignt©2003 Poppendieck.LLC

21

Predictable Outcomes To Get Predictable Outcomes, Don’t Predict! Make Decisions based of Facts, not Forecasts.

A Minnesota Wedding “

August 10th “ “

“

?

50% Chance of Rain 65-95 ºF

Invitations must be sent in June

March, 2003

Copyrignt©2003 Poppendieck.LLC

22

Delay Commitment “

Share partially complete design information.

“

Develop a sense of how to absorb changes.

“

Avoid extra features.

“

Develop a quick response capability.

“

Develop a sense of when to make decisions.

March, 2003

Copyrignt©2003 Poppendieck.LLC

23

Software Delaying Tactics Encapsulate Variation “

“

Group what is likely to change together inside one module Know the domain!

Separate Concerns “

“

A module should have only one responsibility And only one reason to change

March, 2003

Avoid Repetition “ “ “ “

Don’t Repeat Yourself Once & Only Once Never copy & paste Never!

Defer Implementation “

“

You Aren’t Goanna Need It It costs a bundle to maintain and a bundle to change

Copyrignt©2003 Poppendieck.LLC

24

Principle 4: Deliver Fast “

The most disciplined organizations are those that respond to customer requests “ “ “

“

Rapidly Reliably Repeatedly

Software Development Maturity “

The speed at which you reliably and repeatedly convert customer requests to deployed software Submit Request

March, 2003

Measure The Average Cycle Time Shorter Time = More Maturity

Copyrignt©2003 Poppendieck.LLC

Deploy Code

25

Principles of Speed “ Pull

from customer demand

“ Pull

with an order “ Don’t push with a schedule “ Make

work self-directing

“ Visual

“ Rely

Workplace

on local signaling and commitment

“ Kanban “ Scrum

“ Use

Small Batches

“ Limit March, 2003

Meetings

the amount of work in the pipeline Copyrignt©2003 Poppendieck.LLC

26

Manufacturing: Kanban

March, 2003

Copyrignt©2003 Poppendieck.LLC

27

Software Kanban “

Story Cards or Iteration Feature List “

“

Information Radiators “ “

“

How do developers know what to do? White Boards Charts on the Wall

To Do Story YY Login New User Get Password Afal;jdsa;fuwe

Story XX Login New User Afal;jdsa;fuwe

Checked Out Story XX Login New User Afal;jdsa;fuwe Story YY Login New User Get Password Afal;jdsa;fuwe

Daily Meetings “ “ “

Story XX Login New User Afal;jdsa;fuwe

Story YY Login New User Get Password Afal;jdsa;fuwe Story YY Login New User Get Password Afal;jdsa;fuwe

Story XX Login New User Afal;jdsa;fuwe

Story XX Login New User Afal;jdsa;fuwe

Tests Passed Story YY Login New User Get Password Afal;jdsa;fuwe

Story YY Login New User Get Password Afal;jdsa;fuwe

Story XX Login New User Afal;jdsa;fuwe

Status Commitment Need

March, 2003

Copyrignt©2003 Poppendieck.LLC

28

Make Convergence Visible Time to Complete (in staff days)

Time to Complete (in staff-days) 700

600

600

500

500

400

400

300 300

200

200

100

100 0

0 jan

feb

mar

apr

may

jun

jul

aug

sep

oct

nov

dec

jan

feb

mar

apr

may

jun

jul

aug sep

oct

nov

dec

250

Acceptance Tests

200 Tests Written Tests Passing

150 100 50 0 1

2

3

4

5

6

7

8

9

10

Iteration

March, 2003

Copyrignt©2003 Poppendieck.LLC

29

Queues

“

Cycle Time “

Average End-to-End Process Time “ “

From Entering The Terminal To Arriving at the Gate

Time Spent in a Queue is Wasted Time “ The Goal: Reduce Cycle Time “

March, 2003

Copyrignt©2003 Poppendieck.LLC

30

Reducing Cycle Time 1.

Steady Rate of Arrival Develop In Short Iterations

2.

Steady Rate of Service Test Features Immediately

3.

Small Work Packages Integrate Features Individually

4.

Reduce Utilization You Don’t Load Servers to 90%

5.

Eliminate Bottlenecks Everyone Pitches In Wherever They Are Needed

March, 2003

Copyrignt©2003 Poppendieck.LLC

5

31

Queueing Theory Lessons Small Batches Move Faster Slack Resources Decrease Cycle Time

1. 2.

Cycle Time as a Function of Utilization and Batch Size 45

Cycle Time (hours)

40 35

Large Batches Medium Batches

30

Small Batches

25 20 15 10 5 0 10%

March, 2003

20%

30%

40%

50%

60%

70%

Copyrignt©2003 Poppendieck.LLC

80%

90%

100%

32

XP’s 12 practices 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

The Planning Aim Small Releases Metaphor Simple Design Testing Refactoring Pair Programming Collective Ownership Continuous Integration Sustainable Pace On-Site Customer Coding Standards

March, 2003

Copyrignt©2003 Poppendieck.LLC

33

Case Study: XP “ Discussion “ How

do XP practices

Increase Feedback “ Delay Commitment “ Deliver Fast “

“ Examples “ Gearworks “ Your

March, 2003

experience

Copyrignt©2003 Poppendieck.LLC

34

From Gearworks developers Don’t • Put off refactoring • Open up visibility just for testing • Write time/date brittle tests • Test generated code

Do • Write tests before code • Eliminate duplication • Refactor mercilessly • Leave code better than you found it • Only write tests for contracts • Write tests for bugs (before fixing them) • Don’t be afraid to throw away code • Use local databases

March, 2003

Copyrignt©2003 Poppendieck.LLC

35

Scrum every 24 hours

Scrum: 15 minute daily meeting. Teams member respond to basics: 1) What did you do since last Scrum Meeting? 2) Do you have any obstacles? 3) What will you do before next meeting?

Sprint Backlog: Feature(s) assigned to sprint

Backlog items expanded by team

30 days

New functionality is demonstrated at end of sprint

Product Backlog: Prioritized product features desired by the customer

March, 2003

Copyrignt©2003 Poppendieck.LLC

36

Case Study: Scrum “ How

does Scrum

“ Increase

Feedback “ Delay Commitment “ Deliver Fast “ Examples “ Minnesota

Secretary of State UCC System “ Your examples

March, 2003

Copyrignt©2003 Poppendieck.LLC

37

Break

Principles of Lean Thinking 1. 2. 3. 4. 5. 6. 7.

Eliminate Waste Increase Feedback Delay Commitment Deliver Fast Build Integrity In Empower the Team See the Whole

Principle 6: Build Integrity In Why are we doing this?

With Refac tor

ing or ct efa

Communication

tR ou

What needs to be done?

How do we build it?

Time

How do we support it?

Refactoring

Integrated Product Teams Customer

System

Current Business Needs Comparison

Developer

Requirements

ing

th Wi

Domain Context

Current Design Intent

Feedback

Code

Current Capability

Refactoring

Maintenance

Test-Driven Development March, 2003

Copyrignt©2003 Poppendieck.LLC

40

Test-Driven Development Requirements

Feedback Customer

System Under Test

Current Business Needs Comparison

Developer

Refactoring

March, 2003

Current Design Intent

Code

Current System Capability

Maintenance

Copyrignt©2003 Poppendieck.LLC

41

Automated tests: The key discipline of Agile “

Don’t attempt iterative development without automated tests

“

Developers will to write tests anyway

“

“

Why not write the test first?

“

Why not capture the tests and automate them?

“

Why not make tests a part of the code base?

Legacy code is code without a test harness

March, 2003

Copyrignt©2003 Poppendieck.LLC

42

Agile Testing “ Types

of tests

“ Developer “

Do the underlying mechanisms work?

“ Customer “

Tests Tests

Is the business purpose achieved?

“ -ability

Tests

Load/Stress “ Security “ Usability “

z

“

March, 2003

Never automated!

Etc. Copyrignt©2003 Poppendieck.LLC

43

Testing Discussion “ What

is your company’s testing practice? “ Is

testing integrated with development? “ Is testing driven by requirements documents? “

Could test documents replace requirements documents?

“ How

March, 2003

much testing is automated?

Copyrignt©2003 Poppendieck.LLC

44

Refactoring 1. Simplicity “

The goal of most patterns

2. Clarity “ “

“

4. No

Repetition “

5. No

Usability Performance

ing or ct efa

“

for Use

ing

tR ou

3. Suitable

With Refac tor th Wi

“

Common language Encapsulation Self-documenting code

NO REPITITION!

Extra Features “ “

March, 2003

No Code Before its Time No Code After its Time Copyrignt©2003 Poppendieck.LLC

45

Isn’t Refactoring Rework? Absolutely not! Refactoring is the outcome of learning “ Refactoring is the cornerstone of improvement “ Refactoring builds in the capacity to change “ Refactoring doesn’t cost, it pays “

S Re top fac ! tor !

March, 2003

Copyrignt©2003 Poppendieck.LLC

46

Techniques for Emergence “

Use automated test harnesses “

“

Refractor ruthlessly “

“

Based on a deep understanding of the domain

Provide Technical Leadership “

“

Refactoring is NOT rework

Use devisable architectures “

“

Legacy software is software without a test harness

And Communities of Expertise

Use Set-Based Design “

Keep Options Open

March, 2003

Copyrignt©2003 Poppendieck.LLC

47

Leadership Champion

“ “ “ “ “

Creates the vision Recruits the team Finds Support ‘Responsible’ for the design

Chief Engineer

“ “ “ “ “

Understands the Target Customer Writes the Product Concept Brings Customer Vision to Technical Workers Makes Key Technical Tradeoff Decisions

Master Developer

“ “

Also Known As: “ “ “

March, 2003

Architect Systems Engineer Chief Programmer Copyrignt©2003 Poppendieck.LLC

48

Communities of Expertise “

Matrix

“

“

Value Adding Teams

“

Communities of Expertise

Functional Managers “

Teacher “ “

Value Adding Teams

“ “

Communities of Expertise

“

Team Leaders “

Conductor “ “ “ “

March, 2003

Hire Mentor Set Standards Establish Communities

Assemble the Team Clarify the Purpose Make Work Self Organizing See to Individual Motivation

Copyrignt©2003 Poppendieck.LLC

49

Point-Based vs. Set-Based Point Based Design

Set Based Design

Set up a meeting using the point-based model.

Now set up the meeting by communicating about sets.

A: My best time is 10:00. Can you make it?

A: I can meet 10:00 - 1:00 or 3:00 - 5:00. Can you make any of these times?

B: No, 3:00 is bad. 9:00? ? A: Uh, already booked. Can you meet at 3:00?

B: Let’s meet 12:00 - 1:00.

You already understand this!

B: No, I can’t. How about 2:00? based on dissertation by Durward K. Sobek, II, 1997 March, 2003

Copyrignt©2003 Poppendieck.LLC

50

Set-Based Design is Counterintuitive Point Based Design

Set Based Design

Marketing Design Solution

Analyze & Critique

Body Chassis

Body Structural Capability Accept able

Suspension Alternatives

Modify Manufacturing

Styling Alternatives

Styling

based on dissertation by Durward K. Sobek, II, 1997 March, 2003

Copyrignt©2003 Poppendieck.LLC

51

Set-Based Development

Gradually Narrow the Tolerances

March, 2003

Milestones

Communicate Constraints, Not Solutions

→

Vehicle concept

→

Vehicle sketches

→

Clay models

→

Design structure plans

→

First prototype

→

Second prototype

→

Production trials

→

Release to production

Copyrignt©2003 Poppendieck.LLC

52

Software Examples Medical Device Software

Choosing Technology

Web Site Design

March, 2003

Copyrignt©2003 Poppendieck.LLC

53

Discussion “ Should

TDD be done from developer tests or customer tests? “ Should legacy code be refractored or discarded? “ Is there a place for specialists? “ What is the role of an architect?

March, 2003

Copyrignt©2003 Poppendieck.LLC

54

Software Integrity “ Perceived

(External) Integrity

The totality of the system achieves a balance of function, usability, reliability and economy that delights customers. “ Conceptual

Conceptual Integrity

Perceived Integrity

(Internal) Integrity

The system's central concepts work together as a smooth, cohesive whole. March, 2003

Copyrignt©2003 Poppendieck.LLC

55

Integrity comes from Excellent, Detailed Information Flow

March, 2003

Copyrignt©2003 Poppendieck.LLC

56

Agile Customer Toolkit Why are we doing this? Mission & Vision Success Model

Capabilities Priorities

What needs to be done?

Role Model, UC Model, UI Model MMF’s, User Stories -> Customer Tests

How do we build it? One Domain Language March, 2003

Programmer Tests -> Working Software

How do we support it? Copyrignt©2003 Poppendieck.LLC

57

Domain Driven Design “ Find

the right words

“ Domain

“ Decide

Language

what to do

“ Roles “ Characters “ Use Cases “ Plot, Dialog “ Interfaces “ Action

“ Understand

Constraints

“ -abilities March, 2003

Copyrignt©2003 Poppendieck.LLC

58

Conceptual Integrity Most Integrated

Least Integrated

Integrated Product Team

Sequential (phased)

Timing of Upstream-Downstream Activities

Stage Overlap (simultaneous)

Documents e-mail

Richness of Information Media

Face-to-Face (high bandwidth)

Batch Transmission (one-shot)

Frequency of Information Transmission

Fragmented (piece-by-piece)

Unilateral

Direction of Communication

Bilateral (feedback)

Late Release Of Complete Information

Timing of Upstream-Downstream Information Flow

Early Release of Preliminary Information

March, 2003

Copyrignt©2003 Poppendieck.LLC

59

Discussion: Integrated Product Teams “ You

are asked to recommend members for an IPT for your organization. “ What

functions would you have on it? “ What level of people in the organization? “ Who would lead it? “ How often would it meet? “ Sketch a typical meeting agenda.

March, 2003

Copyrignt©2003 Poppendieck.LLC

60

Principles of Lean Thinking 1. 2. 3. 4. 5. 6. 7.

Eliminate Waste Increase Feedback Delay Commitment Deliver Fast Build Integrity In Empower the Team See the Whole

Principle 6: Empower the team “

1982 – GM Closed the Fremont, CA Plant “ “

“

1983 – Reopened as NUMMI (Toyota & GM) “ “ “

“

Lowest Productivity Highest Absenteeism Same work force White-collar jobs switch from directing to support Small work teams trained to design, measure, standardize and optimize their own work

1985 “ “ “ “

Productivity & quality doubled, exceeded all other GM plants Drug and alcohol abuse disappeared Absenteeism virtually stopped Time to expand the plant

March, 2003

Copyrignt©2003 Poppendieck.LLC

62

Value those who add value “ Who

decides what they do next? “ Who designs their processes? Tr a

in in g

Pr

Decision Making Authority

a m r fo In

March, 2003

g esi D ss oce

rity o h ut nA

Resources

n tio

Do They Believe They Make The Decisions? Copyrignt©2003 Poppendieck.LLC

Or ga ni za

tio na l

En e

rg y

63

Team Commitment 1. Small Team 2. Clear Mission 3. Short Timeframe 4. Staffed with the necessary skills z z

Technology Expertise Domain Experience

5. Enough information to determine feasibility 6. Assured of getting needed resources 7. Freedom to make decisions 8. Basic environment for good programming z z z z

March, 2003

Coding Standards Version Control Tool Automated Build Process Automated Testing Copyrignt©2003 Poppendieck.LLC

64

Bring people together Give them a challenge Implement immediately

Software Kaizen Event

Brainstorm solutions

Decide at a Town Meeting Present recommendations March, 2003

Copyrignt©2003 Poppendieck.LLC

65

Principle 7: See the Whole Measure DOWN

Measure UP

Decomposition

Aggregation

You get what you measure You can’t measure everything Stuff falls between the cracks You add more measurements You get local sub-optimization

Span of Control

Span of Influence

Hold people accountable for what they can control Measure at the individual level Fosters competition March, 2003

You get what you measure You can’t measure everything Stuff falls between the cracks You measure UP one level You get global optimization

Hold people accountable for what they can influence Measure at the team level Fosters collaboration

Copyrignt©2003 Poppendieck.LLC

66

From Lean Thinking, by James Womack & Daniel Jones, 1996

Beyond company boundaries

“ “ “

Mine 20 min process 2 weeks store

Reduction Mill 2 weeks store 30 min process 2 weeks store

Smelter 3 months store 30 min process 2 weeks store

Can Maker 2 weeks store 1 min process 2 weeks store

Cold Roller 2 weeks store < 1 min process 4 weeks store

Hot Roller 2 weeks store 1 min process 4 weeks store

Bottler 4 days store 1 min process 5 weeks store

Retail Warehouse 3 days store

Retail Store 2 days store

Home 3 days store 5 min process

319 days 3 hours (0.04%) processing time Everyone Looking Out For Their Own Interests

March, 2003

Copyrignt©2003 Poppendieck.LLC

67

Optimize the Economic Chain “

In every single case, the Keiretsu (K-ret-soo), that is, the integration into one management system of enterprises that are linked economically, has given a cost advantage of at least 25% and more often 30%.*

“

Keiretsu : a group of affiliated companies in a tight-knit alliance that work toward each other's mutual success. “

GM: 1920’s – 1960’s “

“

Sears: 1930’s – 1970’s “

“

Partial ownership, contracts

Marks & Spencer: 1930’s – ? “

“

Ownership

Contracts

Toyota: 1950’s – present “

* Management Challenge for the 21st Century, Peter Drucker

Contracts, economic incentives

March, 2003

Copyrignt©2003 Poppendieck.LLC

68

How to get Started Assemble a Keiretsu 2. Map the existing value stream 3. Map the future value stream 1.

“ “

Use Lean Principles Indicate where key changes are needed

Use Kaizen events to create change 5. Repeat from (1.) 4.

March, 2003

Copyrignt©2003 Poppendieck.LLC

69

Exercise At what level can you assemble a Keiretsu? “ What organizations would be in the Keiretsu? “ Draw a current map for your Keiretsu. “ Draw a future map. “ List the Kaizen Events for achieving the future map. “

March, 2003

Copyrignt©2003 Poppendieck.LLC

70

Principles of Lean Thinking Eliminate Waste 2. Amplify Learning 3. Decide as Late As Possible 4. Deliver as Fast as Possible 5. Empower the Team 6. Build Integrity In 7. See the Whole 1.

Bibliography – Lean Thinking Austin, Robert D. Measuring and Managing Performance in Organizations. Dorset House, 1996. Christensen, Clayton M. The Innovator’s Dilemma. Harvard Business School Press, 2000. Clark, Kim B., & Takahiro Fujimoto. Product Development Performance: Strategy, Organization, and Management in the World Auto Industry. Harvard Business School Press, 1991. Collins, Jim. Good to Great: Why Some Companies Make the Leap…and Others Don’t. HarperBusiness, 2001. Drucker, Peter F, Management Challenges for the 21st Century, Harper Business2001 Dyer, Jeffrey H. Collaborative Advantage: Winning Through Extended Enterprise Supplier Networks. Oxford University Press; 2000. Freedman, David H. Corps Business. HarperBusiness, 2000. Goldratt, Eliyahu M. The Goal: A Process of Ongoing Improvement, 2nd rev. ed. North River Press, 1992. Klein, Gary. Sources of Power: How People Make Decisions. MIT Press, 1999. O’Reilly, Charles A., III, & Jeffrey Pfeffer. Hidden Value: How Great Companies Achieve Extraordinary Results with Ordinary People. Harvard Business School Press, 2000. Ohno, Taiichi. The Toyota Production System: Beyond Large-Scale Production. Productivity Press, 1988. Reinertsen, Donald G. Managing the Design Factory: A Product Developer’s Toolkit. Free Press, 1997. Smith, Preston G., & Donald G. Reinertsen. Developing Products in Half the Time: New Rules, New Tools, 2nd ed. John Wiley & Sons, 1998. Ward, Allen, Jeffrey K. Liker, John J. Cristaino, & Durward K. Sobek, II. “The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster.” Sloan Management Review 36(3): Spring 1995, 43–61. Womack, James P., & Daniel T. Jones. Lean Thinking, Banish Waste and Create Wealth in your Corporation. Simon and Schuster, 1996. Second Edition published in 2003. Womack, James P., Daniel T. Jones, & Daniel Roos. The Machine That Changed the World: The Story of Lean Production. HarperPerennial, 1991. 72 March, 2003 Copyrignt©2003 Poppendieck.LLC

Bibliography – Software Development Beck, Kent, Test Driven Development: By Example, Addison-Wesley, 2003 Beck, Kent, & Martin Fowler. Planning Extreme Programming. Addison-Wesley, 2001. Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999. Cockburn, Alistair. Agile Software Development. Addison-Wesley, 2002. Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2000. Constantine, Larry, & Lucy Lockwood. Software for Use: A Practical Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley, 1999. Cusumano, Michael A., & Richard W. Selby. Microsoft Secrets: How the World’s Most Powerful Software Company Creates Technology, Shapes Markets, and Manages People. Simon & Schuster, 1998. Denne, Mark and Jane Cleland-Huang, Software by Numbers: Low-Risk, High-Return Development, Prentice Hall, 2004 Evans, Eric. Domain Driven Design. Addison-Wesley, 2003. Fowler, Martin, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003 Highsmith, Jim. Agile Software Development Ecosystems. Addison-Wesley, 2002. Highsmith, James A. Adaptive Software Development: A Collaborative Approach to Managing Complex Systems. Dorset House, 2000. Hohmann, Luke. Beyond Software Architecture: Creating and Sustaining Winning Solutions. Addison Wesley, 2003. Hunt, Andrew, & David Thomas. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley, 2000. Jeffries, Ron, Ann Anderson, & Chet Hendrickson. Extreme Programming Installed. Addison-Wesley, 2001. Johnson, Jeff. GUI Bloopers: Don’ts and Do’s for Software Developers and Web Designers. Morgan Kaufmann Publishers, 2000. Larman, Craig. Agile & Iterative Development: A Manager’s Guide, Addison-Wesley, 2003 Poppendieck, Mary & Tom Poppendieck. Lean Software Development: An Agile Toolkit. Addison-Wesley, 2003. Schwaber, Ken, & Mike Beedle. Agile Software Development with Scrum. Prentice Hall, 2001. Thimbleby, Harold. “Delaying Commitment.” IEEE Software 5(3): May 1988.

March, 2003

Copyrignt©2003 Poppendieck.LLC

73

des documents recommandant

[image: alt]

lean architecture for agile software development james o coplien pdf

for agile software development james o coplien PDF file for free from our online library ... With our online resources, you can find lean architecture for agile.

[image: alt]

Ontology based Software Development

user interactions: user actions: create/update/delete, query/view, user goals/intentions - still sketchy; not yet used. â—‹ abstract convergence platform; software ...

[image: alt]

Software development engineer .fr

manufacturers and their suppliers, aircraft and aircraft engine manufacturers, ... high performance computing (HPC) and software optimization, improvements of ... candidate should have excellent programming skills (C++, python) and some.

[image: alt]

Lean Office, Lean Administration

job. The office itself (desk, furniture, files, computer...) is often considered as private ... Management, which most known ... workshops, where methods and.

[image: alt]

Lean Accounting - Lean Business France

Vous avez adoptÃ© la dÃ©marche Lean Management et vous en tirez dÃ©jÃ les bÃ©nÃ©fices. Est-ce que vos systÃ¨mes de contrÃ´le et vos mesures de performance ...

[image: alt]

initiation lean manufacturing lean cturing

Ensuite, 5 ans au sein du leader mondial en matière de sécurité numérique, en tant ... Effectuer une transformation Lean réussie, passe par l'implémentation ...

[image: alt]

Software development engineer _ Airoha Technology Corporation 104

tuning software development tools, automated validation ... Embedded Wireless Firmware Engineer. Product ... C & C + + Programming Starter 0125. C.NET ...

[image: alt]

Development Guidelines for Vehicle Based Software

The Motor Industry Research Association, 1994, 2000, 2001 ... PDF version 1.1 parameter optimization, adaptive control and on-board diagnostics. for integrated systems, an architecture of the complete vehicle electrical system should ..

[image: alt]

Development Guidelines for Vehicle Based Software

Much time and resources are being committed by vehicle manufacturers to 3.4.10.8 Before beginning a design, the rules and naming conventions for the Ensure that staff, suppliers and subcontractors are competent to perform the tasks.

[image: alt]

Nokia 9110 Communicator Software Development ... Nokia 9110

7.2 Some fax settings. 7.3 Receiving faxes.. 8. SMS. 8.1 SMS main view.......... 8.2 Received messages.. 8.3 Create and send a message. 8.4 Concatenated short ...

[image: alt]

The Urbi Software Development Kit .fr

Sep 30, 2010 - It provides you with natural constructs to run and control high numbers of API provides methods to declare which elements of your object are to be shared. scope for every element in the collection resulting of the evaluat

[image: alt]

License and Software Development Agreement - Obligement

1 "Classic Amiga OS" means the operating system owned and developed by ... "Confidential information" means any business and technical information ofa ... Following such bi-monthly report, accrued royalties shall promptly be wired to Amiga. Amig

[image: alt]

Jean-Roch SOTTY Research & development software engineer

Currently : Developer, I.T. Resources Center of Haute Savoie. Mission ... Languages : Java, C, C++, Python, PHP, Smalltalk, Ada, SQL, PL/SQL. Web: HTML ...

[image: alt]

Introduction to Gameboy hardware and software development

The pins to the two ends of the connectir (+5V and GND) are correctly ... assembly program is copied from the galp tutorial, which is an introduction to the rgbds.

[image: alt]

Development Guidelines for Vehicle Based Software

3.1.1.4 The project definition should consist of a list of features and functions to be assigning functionality to the various elements (hardware, software, etc.) 3.3.1.9 The vehicle manufacturer should perform a proper functional analysis

[image: alt]

Intro lean

[image: alt]

Lean for value

RH et DG ont du mal à correctement positionner la fonction dans le projet d'entreprise et les transformations à mener. Faute de réflexion, elle se cantonne à un ...

[image: alt]

lean santé - OIIQ

Ils se disent préoccupés de la qualité des soins qui en découle et de contrôle de la qualité de l'activité professionnelle et de développement de la pratique.

[image: alt]

lean primer - Fabrice Aimetti

Remarque : le mode de pensÃ©e Lean et la MÃ©thode Toyota sont de vastes mÃªme oÃ¹ se crÃ©e la valeur, construire des relations de confiance avec les changements de pÃ©rimÃ¨tre, limite le peaufinage inutile et augmente le pouvoir de

[image: alt]

Lean for value

Page 1. LES IMMATERIELS ACTIFS. â€‹DEVELOPPEZ VOS FORCES ET VOS IMMATERIELS ACTIFS. â€‹Dirigeants, vous Ãªtes plus riches que vous ne le ...

[image: alt]

enhanced C lean

Steam Nozzle. 2. Water Fill Safety Cap. 3. Steam Trigger. 4. Handle Grip. 5. Power Cord. 6. Power Indicator Light. 7. Safety Pressure Indicator. 8. Clean Control ...

[image: alt]

Lean et Leadership

poussÃ©s vers quelque chose de mieux ou vers une abysse. â€“ Le Management par l'adhÃ©sion doit se transformer en un engagement de la direction sinon ...

[image: alt]

Development of a software platform for the analysis of nonribosomal

Sep 8, 2009 - in this pathway, the peptides (NRP) are synthesized by huge enzymatic complexes called NRPS/PKS analysis web site, [Conti et al., 1997].

[image: alt]

Development and validation of software and embedded systems

Mar 30, 2016 - SKILLS. Offshore project management. Team leadership. ... 2007-2012 Coordinator of offshore validation activities (India). Products: several ...

×
Report Lean Software Development

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

