JEE ADVANCED 2015 PAPER 1 SOL


729KB taille 6 téléchargements 544 vues
CODE #

JEE-2015 : Advanced Paper – 1 Answers and Explanations Physics

Chemistry

1

2

11

A,C

21

8

31

A

41

8

51

A,D,C

2

7

12

B,C

22

4

32

B,D

42

5

52

C,D

3

2

13

A,C

23

4

33

A

43

2

53

B,C

4

3

14

B,D

24

3

34

D

44

0

54

B,D

5

3

15

D

25

4

35

A

45

4

55

A,B

6

7

16

C

26

1

36

C

46

3

56

A,D

7

6

17

B

27

2

37

A,B,C

47

8

57

A,C

8

2

18

A,B,C

28

9

38

B,C,D

48

4

58

B,C

9

A,B,D

19

See Sol.

29

A,C,D

39

See Sol.

49

A,D

59

See Sol.

10

B

20

See Sol.

30

C

40

See Sol.

50

A,B,C

60

See Sol.

PART - I : PHYSICS 1. 2



g 4 ⇒h=R If g =

v=

GM R

(

)

3 m v 22 − v12 = mg(3) 4

⇒ v 22 − v12 = 40 v 22 = 40 + 9 = 49 v2 = 7 m/s.

1 GMm GMm − mv 2 − = 2 R 2R

2. 7

Mathematics

3. 2

P ∝ R2 T4 PA = 104 PB

∴ vesc = v 2.

R A .TA = 10 4 RB TB4

For a disc rolling without slipping

R  TA = 10 ×  B  TB  Ra 

2

4

2

1/ 2

2 1 1  MR2   v  mv 2 +   ⋅  = K ⋅E 2 2  2   R 

1/ 2

TA  1  = 10 ×   TB  400 

3 mv 2 = K ⋅ E 4 Now, ⇒

=

1 2

Now according to wien’s law

λ A TB = =2 λB TA

3 3 mv12 + mg(30) = mv 22 + mg(27) 4 4 ... 1 ...

4. 3

5. 3

Fuel available ∝ power initial power = 8 × Required power ∴ after 3 half lives, the power output will become ≤ power required ∴n=3

M2 14 = = 7. M1 2 7. 6

30° 30° Ö3a/2

For wave traveling in water the equivalent distance is µ times the geometrical ∴ For maxima

a/2 The flux passing through the plane is 1/6th of the total flux emitted by the wire. λL ∴ φ = 6∈ 0 n = 6.

µ d2 + x 2 − d2 + x 2 = mλ d2 + x2 (µ − 1) = mλ ∴ d2 + x2 = 9 m2 λ2 x2 = 32 m2 λ2 – d2 Hence, P = 3 6. 7

8. 2

For air as medium Mirror

hc −φ =E λ φ=

1 1 1 + = v u f f = 10, u = 15 v = 30 cm |m1| = 2 For lens

1242 − 10.4 = 3.4 90

13.6

= 3.4 n2 n = 2.

9. A, B, D One mole of H2 + one mole of helium. at temp T

1 1 1 − = v u f f = +10 u = –20 m2 = 1 Total magnification m1m2 = M1 = 2 For medium as µ = 7/6 No change for mirror but for the lens

U=

1× C v1 × T + 1× C v 2 × T 3 / 2RT + 5 / 2RT = 2 2

8 RT = 2RT 4 (A) is correct =

1 3×6  = − 1 (x ) f ′  2 × 7  g

… (i)

1 3  = − 1 (x ) f  2  g

… (ii)

(B) → In gas mixture v = C

P1 + CP2

γ RT M

5 + 7 12 4 × 3 3 = = = = . v= C C v1 + v 2 3 + 5 8 4 × 2 2

From (i) and (ii)

35 cm 2 for lens u = –20 cm f′ =

M=

+35 cm 2 ∴ v = 140 cm f=

140 =7 20 M2 = 2 × 7 = 14 | m |=

... 2 ...

1× 2 + 1× 4 =3 1+ 1

vmix =

3 RT 2×3

vHe =

5RT 3×4

1 cm

vmix 3 RT × 3 × 4 6 = = vHe 2 × 3 × 5RT 5 (B) is correct (C) vrms =

8RT 8RT 8RT , vHe = , vH2 = µM µ4 µ24

vHe 8RT × π × 2 = = vH µ × 4 × 8RT 2

each division of main scale =

5 division of vc = 4div of main scale

1 2

1  1 5 × (distance of vc) = 4 ×   cm = cm 2 8

∴ (D) is correct

10. B R1 = =

=

 1  (distance of vc) =  cm  .  10  ∴ L.C = 0.125 – 0.10 cm = 0.025 cm Option A: pitch = 2 × 0.025 = 0.050 cm

2.7 × 10−8 × 50 × 10−3 (72 − 4) × 10−6

2.7 × 50 × 10−8 × 10−3 45 × 10−6

=

2.7 × 50 × 10−5 45

0.050cm = 0.0005cm = 0.005 mm 100 ∴ Option B is correct least count of linear scale = 0.050 cm distance of pitch = 0.100 cm ∴ LC =

27 × 5 × 10−5 27 × 5 × 10−5 = = 3 × 10−5 9 9

R2 =

1 cm 8

1× 107 × 50 × 10−3

0.100 = 0.001cm = 0.01mm 100 ∴ Option C is correct.

∴ L.C =

4 × 10−6

 250  × 10−5 12.5 × 10–4 =    2  ∴ equvialant resistance R1R2 (3 × 250 / 2) × 10−5 × 10−5 = = R +R (3 + 250 / 2) × 10−5 1 2

13. A, C h = ML2T–1 c = LT–1 FL2 = [M−1L3 T −2 ] M2 solving we get

G=

 750  −5  7500  −6 1875µΩ =  × 10 =  256  × 10 = 256 64    

a=

11. A, C hv = ev0 + φ

−1 1 1 ,c= ,b= 2 2 2 1

1

−1

∴ M = kh 2 .c 2 .G 2 option (A) is correct. Similarly if L = kha.cb.Gc = [ML2T–1]a[LT–1]b[M–1L3T–2]c a–c=0 2a + b + 3c = 1 a + b + 2c = 0

hc = ev 0 + φ λ hc −φ λ 1 graph of vs v0 will be a st line (option C) λ v0 vs λ will be a decreasing curve option (A) ev0 =

solving we get a =

12. B, C 1 cm main scale is divided in 8 equal divisions. screw gauge 100 divisions on circular scale 5 division of vc = 4 division on main scale.

1

1

−3

−3 1 1 ,c = ,b = 2 2 2

∴ L = kh 2 .c 2 .G 2 ∴ Option C is correct.

... 3 ...

14. B, D

17. B

1 E1 = m(aω1 )2 2

b = maω1

1 E2 = m(Rω2 )2 2

a  1  2 = =n b  mω1 

E1 a2  ω1  =   E2 R2  ω2 

s2

d

for light rays to become parallel on the 2nd refracting surface. 1.5 1 1.5 − 1 − = ∞ u 10

R = m(Rω2)

−10 = −20 cm +0.5 ∴ Image of P is 20 cm away from refrating surface s 2. 1 1.5 1 − 1.5 = Image P will be formed at + −10 v 50

∴ u=

1 = 1 , mω = 1 2 mω2 a (mω2 ) = = n2 b (mω1 )   ω1   =ω    2

 E1 E2  =    ω1 ω2 



1 1 1.5 = − v 20 50



u 50 − 30 = v 1000

1000 = 50 20 ∴ d = 50 + 20 = 70 cm

∴ v=

15. D, C Angular momentum will remain conserved. Initial angular momentum = MR2w

18. A, B, C Magnitude of force is proportional to the length of the wire between the 2 ends in a uniform magnetic field. ∴ (A) is correct, (B) is correct, (C) is correct

2   M 3  M 8 MR2 w =  MR2 + ×  R  + × x 2  w ×   8 5 8 9    

 9 x2  8 R2 =  R2 + R2 +  × 8 × 25 8  9 



– 20

S oc

2

 n2 × 1   1 E1 a2m2 ω2 = 2 2 2 =  4 = 2 E2 R m ω2  n   n

1 – Su

19.

9R2 9 x2 R2 = − R2 − 8 8 × 25 8 1 9  2 x2 1 −  R = 8  25  8

20. (A)

A B C D

→ → → →

R, T P, T, S Q, T, R P, Q, R

P, Q, R, T

U  x2  U1 (x) = 0 1 − 2  2  a 

16 2 R ∴ x = 25 2

4   ∴ x = 5 R   

2

 x 2  2x dU1(x) −U0 = × 2 × 1 − 2  × 2 dx 2  a  a

16. C +q charge will more in SHM, –q charge will more along direction of its displacement because it will experience a net attractive force towards one of the wire.

... 4 ...

U0 4x  x 2  2U0 x  x 2  F = 2 × a2 1 − a2  = a2 1 − a2      at x = 0, x = a, x = – a,

F=0 F=0 F=0

for x > 0, F > 0 ∴ force will be away from equibrium If x = – a, F = 0, U = 0 at x = 0, U =

U0  U0 1 −1 +  = − 2  3 3 x > – a, F4 (x) = – ve, x < – a, F4 (x) = + ve ∴ Particle oscillate about x = – a, where its potential energy. =

U0 2

U0 4 it will never reach origin, oscillate about x = – a, because at x = – a, it is at equilibrium & force is restoring. Since the energy of particle is

PART - II : CHEMISTRY 21. 8

=N –N

2

(B)

(C)

U0  x  U 2x ,F2 (x) = – 0 × 2   2 a 2 a ∴ x = 0, F2 (x) = 0, particle will oscillate about origin Q (Q), & (S) U2 (x) −

22. 4 Fe3 + + 6SCN− →[Fe(SCN)6 ]3 − Fe3 + + 6CN−  →[Fe(CN)6 ]3 −

Spin only magnetic moment =

PQRS

For [Fe(SCN)6 ]3 − , No. of unpaired electrons

2 2  U 2x U x2 2x 2 2  F3  − 0 × 2 × e − x / a + 0 × 2 × + 2 e − x / a  2 2 a a a  

F3 = –

=

U0 − x2 / a2  x 2  e x 1 − 2  2a2  a 

F4 (x) =

U0 2

1(1 + 2) = 3 = 1.732 Difference = 6 – 1.73 ; 4.27 ; 4 23. 4 BeCl2, N2O, NO2+ , N3− 24. 3 25. 4 M+  → M3 + + 2e− ∆G° = −nFE°

∆G° = −2 × 96500 × − 0.25 = 48250 J = 48.25 kJ 193 =4 So, no. of moles of M+ oxidized = 48.25

 1 3x 2   − 3  a 3a 

U0  x 2  1 −  2a  a2 

x = 0, x = a, x = – a,

35 ; 6

=

P, R, T

F4 (x) = −

5(5 + 2) =

For [Fe(CN)6 ]3 − , No. of unpaired electrons

x = 0, F3 = 0 x = a, F3 = 0 x = – a, F3 = 0 Since Fα – x, ∴ particle experience as an attractive force towards x = 0. at x = – a, U ≠ 0, ∴ particle will not oscillate about x = – a. (D)

n(n + 2) B.M.

26. 1 As So,

F4 = 0 F4 = 0 F4 ≠ 0

Now,

∆Tf = T° – T ∆Tf = 0 – (– 0.0558) = 0.0558 m = 0.01 Kf = 1.86 ∆Tf = iKfm

0.0558 =3 1.86 × 0.01 So formula is [Co(NH3)5Cl]Cl2

for x > 0, F(x) = –ve   for x < 0, F(x) = –ve  ∴ force is not always towards x = 0.

i=

3 U0  1  −a   x a,U 1 = − = − − ×   at 2  3  a  

... 5 ...

38. B, C, D In electrolysis process to obtain copper, impure copper is made anode while pure copper is made cathode using CuSO4 solution.

27. 2 Two chiral center So stereoisomers = 21 = 2 28. 9 29. A, C, D

39.

Fe3 + + H2 O2 + OH−  → Fe 2 + + H+ + O 2 + H2 O

30. C As the reaction is exothermic. So increase of temperature yields in less production of NH3. 31. A In CCP arrangement O2– = 4 So no. of Al3+ = 2 So no. of Mg2+ = 1

40.

→ T B 

Malachite → Cu2CO3(OH)2

→ Q, R C 

Bauxite → Al(OH)3 or Al2O3

→ R D 

Calamine → ZnCO3 Argentite → Ag2S

→ R, T A  → P, Q, S C  → P, Q, S, T D 

1 8

PART - III : MATHEMATICS

32. B, D

41. 8 Let x be Bernoulli RV, Probability to achieve J heads in ntrials = P [x = j] – nCJ pj (1 – p)Aj P [x ≥ 2] = 1 – P [x < 2]

O 33. A

n

CH3 O



CH3

CH3 O

O

n

 1  1 = 1 – P [0] – P [1] = 1 −   − n   ≥ 0.96 2 2

(–)

HO

Siderite → FeCO3

→ P, Q, S B 

2 1 So octahederal holes ocupied by Al = = 4 2 3+

So tetrahederal holes ocupied by Mg2+ =

→ P, Q, S A 

1+ n 2n

f (n ) =

HT , ∆

→

≤ 0.04

1+ n n

2

,f (1 + n ) =

2+n 2n+1

−n 2 + n 1+ n − = 0.04 128

9 < 0.04 256

nmin = 8

35. A 36. C 37. A, B, C Cr2+ is reducing agent and itself oxidises to Cr3+. Mn3+ is an oxidizing agent and reduces itself to Mn2+.

42. 5 n = 6 C5 × 5 5

... 6 ...

m = 6 C5 × 5 C4 4 × 5C1 × 5 m =5 n

43.2

Equation of normal at (x1,y1) to parabola y2 = 4ax

−1

= 2 Normal at (1, – 2) to y2 = 4x

2 x–y–3=0 r=

1

−1

0

1

=

1 1 1 − = 2 4 4

4 I – 1 = 4×

1 −1= 0 4

∫ 0 dx + ∫ 0 +

 x2  =   4 1

1+ 1

( −2)

0

=

3−2−3

y+2= −

∫ 2 + f ( x + 1) − dx

I=

2 y – 2 = − ( x − 1) 2 x+y–3=0 r=

( )

xf x 2

2

−y y − y1 = 1 ( x – x1 ) 2a ∴ at (1, 2) to y2 = 4x

( x − 1)

3+2−3 1+ 1

2

2



x dx + 2

0

∫0 2

45. 4 2 2 π 2 46. 3 F′ ( x ) = 2x × 2cos  x +  − 2cos x 6 

π  = 4x × cos2  x 2 +  − 2cos2 x 6 

= 2 r2 = 2

a

[x ], x ≤ 2 44. 0 f ( x ) =  0 x > 2

2 2

x

2 2

0

∫ f ( x ) dx = 4a cos

 x2  , x2 ≤ 2  f x2 =    0 x 2 > 2

( )

π 2  a + 6  − 2cos a + 2  

∫ f ( x ) dx = 4a cos

0

π 2  x + 6  − 2cos x + 2  

 π  π     f ( x ) = x 8cos  x 2 +  .  − sin  x 2 +   2x  6  6     

 0 x 2  0

π  −4cos x ( − sin ) + 4cos2  x 2 +  6  2

f (0 ) = 4cos2

0, −1 ≤ x ≤  = 0 , 1 < x ≤ 2 0, x> 2  [x + 1],x + 1 ≤ 2 f ( x + 1) =  x +1> 2  0,

0 − 1 ≤ x < 0  = 1 0 < x ≤ 1 0 x > 1 

47.8



5 cos2 2x + sin4 x + cos4 x + sin6 x + cos6 x = 2 4

(

)

2 5 cos2 2x + sin2 x + cos2 x − 2sin2 x cos2 x 4

(

+ sin2 x + cos2 x ⇒

... 7 ...

 3 π = 4× =3  2  6  

(

)

3

(

)

− 3 sin2 x cos2 x sin2 x + cos2 x = 2

)

5 1 3 1 − sin2 2x + 1 − sin2 2x + 1 − sin2 2x = 2 4 2 4

5 5 1 3 − sin2 2x  + +  = 0 4 4 2 4

g ( f ( x )) =

1 x ∈ [0, 2π] 2 total solutions are 8.

 π π 1 π 1 π     −π sin  sin  .sin  sin x    ∈  .sin , .sin  2 6 2 2 2 2 2       

sin2 2x =

51. A, D, C

P 48. 4 Image of y = – 5 about x + y + 4 = 0 is, x = 1 y2 = 4x

c

at x = 1, y = ±2 distance between A & B = Distance between (1, 2) & (1, –2) = 4

49.A,D

Q

R

a 2

2

 g ( x ) x > 0 then f ' ( x ) =  g' ( x ) x > 0   f (x ) =  0 x = 0   −g ( x ) x < 0  −g' ( x ) x < 0  

a+b+c = 0 ⇒ a+b

 e x x > 0 then h' ( x ) =  e x x > 0 h (x ) =    e− x x < 0  e− x x < 0

b . c = 24 ⇒ b c cos θ = 24 ⇒ θ = 30°

( ) ( )

2

b + c + 2b.c = a

(

)

( ) ( )

⇒ c =4 3

θ 120 °

 ef(x) f ( x ) x > 0 then h f x 1  f ' ( x ).e( fx )f ( x ) > 0 ( ( )) =  h ( f ( x )) =   −f ' x .e− f ( x )f x < 0  e− f ( x ) f ( x ) x < 0 ( )   ( )

(

2

)

30°

30°

(

a×b + c ×a = a× b − c

50. A, B, C

(

π π π  f ( x ) = sin  sin  sin x   & g ( x ) = sin x 6 2 2   

= 2 a = b sin (30° ) = 48 3

π π π     −1 1  f (g ( x )) = sin  sin  .sin  sin x    ∈  ,  2    2 2  2 6

(x )

= lim

52. C, D 53. B, C C2 → C2 → C1 C3 → C3 → C1

f ' (x )

x →0 g'

)

= a × 2b + a  = 2 a × b

 −1 1  ⇒ f (x ) ∈  ,   2 2

x →0 g

)

= a × b − −a − b   

π π  −π π  π   −π π  sin x ∈  ,  ⇒ .sin  sin x  ∈  ,  2 2 2 6 2      6 6

f (x )

= a

a . b = a b cos 150° = – 72

x  g ex 1  x > 0 then f (h ( x )) =  e x g' e x > 0  f (h ( x1)) =   −x −x x < 0 x g x e g' e x < 0

h

b

(x )

π   x   π π  π cos   sin  sin x    . .cos  sin x  . cos x π   6 2  2 6   2 = = π 6 cos x 2

... 8 ...

(1 + α )2 α (2 + 3d) 2α (2 + 4α ) (2 + α )2 α ( 4 + 3d) 2α ( 4 + 4α ) (3 + α )2 α (6 + 3d) 2α (6 + 4α )

56. A,D

(1 + α )

2

2

2 + 3α 2 + 4α

⇒ 2α 2 (2 + α )

2

P

4 + 3α 4 + 4α

(3 + α )2 6 + 3α

6 + 4α

O

C3 → C3 → C1

(1 + α )2

2 + 3α α

= 2α 2 (2 + α )

4 + 3α α

2

(3 + α )2 6 + 3α

2

t2 ,t 2 2 (Slope of OP) × (Slope of OQ) = – 1 t1t2 = – 4 Q

α

C2 → C2 –3 C1

Area of ∆OPQ = 3 2

(1 + α )

2

2

2 α

= 2α2 (2 + α )

4 α

2

(3 + α )

2

= 4α

(1 + α )2

11

(2 + α )

2 1

(3 + α )

2

 t4   t4   1 + t12   2 + t 22  = 72 4  4      t2

  t2  + 1  2 + 1 = 72  4  4  

( t1t 2 )2 

3 1

2

  t2  + 1  2 + 1 = 72  4  4  

2 ( 4 + 2α ) 2 0 = 4α

 16   + 16 = 72 16 + 4  t12 +  t12  

[6 + 4α − 8 − 4α ]

t12 +

= −8 α 3

−8α3 = −648α

(

2

1

(t22 + 4)(t22 + 4) = 72 ( t1t2 )2 + 4 ( t12 + t22 ) + 16 = 72

11

= 4α3 3 + 2α 1 0

3

1

 t2

( −4 )2 

R2 → R2 –R1 R3 → R3 –R1

(1 + α )

 t2   t2   1  + t12  2  + t 22 = 3 2 2 2    

1 2

6 α

2

3

t1 ,t 1 2

16 t12

= 10

t14 − 10t12 + 16 = 0

)

8α α − 81 = 0

(t12 − 2)(t12 − 8) = 0

α = 0, 9, −9

t1 = ± 2, ± 2 2 54. B, D

(

)(

P 1, 2 , 4,2 2

55. A, B

... 9 ...

)

57. A, C

(1 + e ) y '+ ye x

x

 −3ax 2 − 2 x < 1 (B) f ( x ) =   bx + a2 x ≥ 1 for continuity – 3a – 2 = b + a2

= 1, If

x dx

=e

(1+ ex ) ∫ e 1+ ex = eloge = 1e x

 ex y '+   1 + ex 

(

 −6ax x < 1 f ' (x ) =   b x ≥1 for differentiability b = – 6a a2 – 6a = – 3a – 2 ⇒ a2 – 3a + 2 = 0 ⇒ a = 1, 2

 1 y =  1 + ex 

)

⇒ y. 1 + ex = x + k at x = 0, y = 2

⇒k=4 y=

x+4 1+ e

dy = dx

(

2ab =4 a+b ⇒ ab = 2(a + b) a + q = 10 a+b=5+q ab = 2 (5 + q)

(D)

x

)

1 + ex − ( x + 4 ) ex

(1 + ex )

2

Let h(x) = 1 + ex – xex – 4ex h’ (x) = ex – 4ex – ex – xex = – (x + 4) ex < 0 for (–1, 0) h (–1) = 1 + e–1 + e–1 – 4e–1

⇒ b=

⇒a=

A→Q B → P, Q C → P, Q, R, S, T D → Q, T

(A) Projection of αi + β i on

3i + j 2

)=

5 15 ,6 q = ,4 2 2

(a − q | = 2,5

58. B, C

(

10 + 2q =5+q a

a ⇒ a + 10 + 2q = 5a + aq a2 + 10 + 2 (10 – a) = 5a + a(10 – a) 2a2 – 17a + 30 = 0

2 >0 e h(0) = 1 + 1 – 4 < 0 then h (x) has a root in (–1, 0)

3i + j = (αi + βi ).

a+

2

= 1−

59.

2 (5 + q )

(1) (2) (3)

3α + β = 3 2

60.

α = 2 + 3β ⇒ α = 2 + 3  2 3 − 3α    = 2 + 6 – 3α ⇒ α = 2

... 10 ...

A → P, R, S B→P C → P, Q D → S, T