

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Java Resources for Teaching Reinforcement Learning

three forms of communication between the agent and the environment provide ware is a natural addition to a RL module in any Arti- ficial Intelligence course.

 Télécharger le PDF

 101KB taille
 2 téléchargements
 368 vues

 commentaire

 Report

Java Resources for Teaching Reinforcement Learning Amy J. Kerr, Todd W. Neller, Christopher J. La Pilla, and Michael D. Schompert Gettysburg College Department of Computer Science Campus Box 402 Gettysburg, PA 17325 E-mail:

Abstract— In this paper we present a library of classes for programming reinforcement learning simulations in Java. This library is based upon the standard by Sutton and Santamaria [1], with valuable additions to simplify the implementation of the software for selected temporaldifference control algorithms and various memory models. We also present arguments for the integration of this library into the curriculum of a Java-based undergraduate course in Artificial Intelligence.

-

State

Agent

Reward

Action Environment ¾

Fig. 2. The agent-environment interaction in reinforcement learning.

I. I NTRODUCTION Reinforcement learning (RL) is a form of machine learning in which a computational agent learns entirely through experience, by trying actions and analyzing the consequences of these actions. The agent’s actions typically bear both immediate and delayed consequences. In the immediate sense, the agent receives a numerical reward for each action. As shown in Figure1, each action also affects the situations and available choices that follow for the agent. That is, each action causes a transition into a subsequent state of the agent’s environment and thus affects the agent’s opportunities for future rewards. In this way, actions also have delayed, indirect rewards. This combination of trial-and-error and delayed rewards yields the intriguing complexity of RL problems. For a complete introduction to RL and the algorithms mentioned hereafter, we recommend [2], [3], [4]. For the purpose of this paper, we will assume an understanding of basic RL theory and algorithms. The RL problem can be formalized by the interaction Â¿

Â¿

Â¿

action2 action1 action0 - state1 - state2 - ... state0 reward2 reward1 reward0

ÁÀ

ÁÀ

ÁÀ

Fig. 1. Each action generates an immediate numerical reward and a state transition.

of two basic entities: the agent and the environment. The agent is the learner and decision-maker. The agent’s environment is comprised of everything that it cannot completely control. Thus, the environment defines the task that the agent is seeking to learn. A third entity, the simulation, mediates the interactions between the agent and the environment. The interactions between the agent and the environment fall into three categories: actions, rewards, and state descriptions. As depicted in Figure 2, the agent takes actions. In response to each action, the environment outputs a reward, the immediate numerical payoff for the action. Additionally, the environment transitions into a subsequent state and relays some information about this new state to the agent. The three basic entities of the RL problem and the three forms of communication between the agent and the environment provide a concise outline for the RL problem and for the fundamental classes and interfaces of the standard interface for programming RL software. II. T HE JAVA R EINFORCEMENT L EARNING L IBRARY In this paper, we present a library of classes for implementing reinforcement learning in Java. The core component of this library is the standard Java interface for programming RL problems. This Java interface is

an adaptation of the C++ standard [5] of Sutton and Santamaria’s RL interface [1]. Like the C++ version, the Java standard is comprised of three core classes, which correspond to the three basic entities of the RL problem. These three classes are Agent, Environment, and Simulation. These classes, and their key methods, are outlined in Figure 3. The presented library includes valuable supplemental code as well. This code includes interfaces and classes for implementing the communication between agents and environments. The library contains Action and State interfaces for this purpose. A wrapper class, ActionResult, is also provided for concisely describing the environment’s response to an agent’s action; an ActionResult instance contains a double reward value and a State instance. Perhaps the most useful additions to the standard interface are the provided Agent subclasses for programming agents that employ temporal-difference (TD) learning. These subclasses are easily adaptable to most (if not all) possible memory models for agents. Selected TD control algorithms are implemented in full for agents with tabular forms of memory. Code is also supplied for a multilayer feedforward neural network with backpropagation, which is one common memory model. The library also includes a complete implementation of a RL problem to demonstrate the use of the contained classes. The example implementation is for a simple maze game adapted from [2]’s Grid World example. The package contains Agent subclasses that employ various TD learning-based algorithms (including SARSA and Watkin’s Q-Learning) with various memory models (including neural networks and look-up tables). The complete Javadoc documentation for the components of the presented library can be found at http://cs.gettysburg.edu/projects/javaRL. The presented standard interface can serve as the kernel of any RL software. Thus, we now refocus our attention on the three core classes of the interface. We briefly outline the three primary methods that appear in each of these classes, pausing briefly along the way to highlight the jewel of the library, the Agent subclasses for implementing TD learning. A. The Agent Class The Agent class is one of the three core classes of the standard Java interface. It is the abstract class for implementing all RL agents. A RL agent interacts with an environment by selecting actions and consequently receiving numerical rewards and state descriptions from

the environment (Figure 2). The immediate numerical reward quantifies the short-term desirability of an action; the State describes the new state of the environment and thus the potential for future rewards. Ideally, the agent learns from these consequences to select the actions that are most desirable in the long-term. By learning this optimal mapping, or policy, from each state of the environment to the action that yields the greatest reward in the long-term, the agent learns to optimally complete the assigned task. The Agent class contains three abstract methods. To tailor the standard interface to a specific RL problem, a user must implement an Agent subclass and define these three abstract methods: init, startTrial, and step. The init method initializes an agent. This initialization typically requires the construction of one or more data structures for the agent’s “memory.” In our adaptation of C++ interface by [5], this method has been endowed with the capability of receiving a preconstructed memory structure as a parameter. This feature allows multiple agents to share the same memory in a form of “self-play.” The init method can either preload past memory or reset the agent’s memory to its original, na¨ıve condition. This method is called once when the RL simulation first begins. The startTrial method prepares the agent for the start of a new trial (i.e. episode) within an ongoing simulation. The method must create and return the first action of the agent in the trial. This first action is determined by the agent’s current policy and the first state of the trial, which is passed as a parameter to the method. The startTrial method is called at the beginning of each trial. The step method is the third abstract method of the Agent class. It is the method where all learning and decision-making occurs for an agent. As parameters, the method receives a State instance and a double reward, which describe the consequences of taking the previous action. If the agent learns in any way with experience, then this method implements this learning. The method then returns the agent’s next action, as determined by the agent’s current policy. This method is called once on each step of the simulation. This abstract structure of the Agent class provides significant flexibility in the design of RL agents. Agent subclasses may implement agents that employ any type of memory model, such as look-up tables, neural networks, or sparse-distributed memories. Furthermore, such subclasses can implement any RL algorithm (in the

public abstract class Agent public abstract void init(Object[] arr) public abstract Action startTrial(State state) public abstract Action step(State nextState, double reward) public abstract class Environment public abstract void init(Object[] arr) public abstract State startTrial() public abstract ActionResult step(Action act) public abstract class Simulation public Simulation(Agent[] agt, Environment env) public void init(Object[] arr) public void startTrial() public void step(boolean collectData) public void steps(long numSteps) public void trials(long numTrials, long maxStepsPerTrial, int printDivisor) public abstract void collectData(State state, Action act, State nextState, double reward)

Fig. 3.

An outline of the three core classes of the Java standard.

step method), such as Monte Carlo or TD learning. 1) The TDAgent Class: Some of the most widelyused RL algorithms are based on temporal-difference (TD) learning. One particular algorithm, known as TD(λ), is especially favored by researchers because it seamlessly unifies two prominent RL algorithms, TD(0) and Monte-Carlo. It also offers an efficient solution to the credit assignment problem through its use of eligibility traces. Because of the prominence of this algorithm, the presented library includes an Agent subclass, TDAgent, for implementing agents that employ TD(λ)based algorithms. In particular, this subclass is conducive to implementing algorithms that approximate actionvalue, or Q, functions using TD methods. Such algorithms include SARSA(λ) and Watkin’s Q(λ)-Learning. The TDAgent class includes the common features of most (if not all) TD(λ)-based algorithms. The class contains common constants, as well as seven simple abstract methods to handle action-value updates. These methods are all abstract to maintain flexibility in the types of memory models employable by the agent. Minimal definitions of the init, startTrial, and step methods from the Agent class are implemented in TDAgent using these seven abstract methods. TDAgent also provides code for implementing ²-greedy policies, which are the most common RL policies (due to their simple

balancing of exploration and exploitation). The structure of TDAgent, with its heavy dependence on abstract accessor and mutator methods, makes the code easily adaptable to most (if not all) TD(λ)-based algorithms and memory models. Furthermore, due to strong resemblances among most action-value adaptations of the TD(λ) algorithm, once a memory model is selected for a given RL problem, only one of TDAgent’s methods, getTDError, is algorithm-dependent. The presented library factors out the common code for TD(λ)-based agents with tabular memories (i.e. look-up tables) in the TDAgent subclass TDAgentTab. The library also includes subclasses of TDAgentTab with appropriate implementations of getTDError for the SARSA(λ) and Watkin’s Q(λ)-Learning algorithms. B. The Environment Class In RL, the environment is the entity that the agent interacts with and seeks to learn about. The environment responds to an agent’s action by outputting a numerical reward and a description of the next environmental state (Figure 2). The Environment class provides a means of implementing all instances of RL environments. The Environment class contains the same three abstract methods as the Agent class. To tailor the standard interface to a specific RL problem, a user

U SING THE JAVA L IBRARY IN AN AI C OURSE The presented library is a natural addition to a RL module in any Artificial Intelligence (AI) course in which the students are familiar with Java. The RL standard, when incorporated into course assignments, offers the following benefits:

Aids students in structuring their approaches to the assignment by dissecting the programming into conquerable modules. Facilitates teamwork. The modularity of the code, combined with the (supplied) explicit specifications, is conducive to group projects. This feature increases the feasibility of more complex and intriguing assignments while also providing opportunities for students to refine their cooperative programming skills. Clarifies RL theory. The standard formalizes the three basic entities of RL by separating them into distinct classes. Furthermore, the interaction between these three entities is explicitly highlighted through the use of the same three methods, thus summarizing the cause-andeffect nature of the interactions between the environment and the agent in each step of a simulation. Highlights TD(λ) learning. Through the variation of the λ parameter, the provided TD(λ)-based code offers experience studying TD(0) and Monte Carlo learning. The supplied code also highlights the commonalities between TD agents, as well as the defining differences, which tend to be slight (i.e. 6 lines of code), between TD(λ)-based algorithms. Offers flexibility in assignment design. By simply varying the elements of the library (specifications and/or code) that are supplied to the students, the library yields an array of potential assignments of varying foci and complexities. These assignments range from straightforward implementations of the three core classes (for a specific RL task, algorithm, and memory model), to experiments with parameter values (i.e. λ in the TDsubclasses), to comparative studies of various algorithms and memory models. The library makes even complex projects feasible by expediting the coding of the foundational and TD-specific classes (through provided specifications and/or code). Provides a fully implemented RL problem for use as an example of RL or as an answer key to an identical assignment. Simplifies grading and correction. By imposing structure on the students’ coding, the RL standard generates more uniform code, and it provides a natural, objective grading rubric. The structure also facilitates modular testing for assessment.

Clarifies the assignment by explicating the task in terms of implementable modules. The class and method names of the standard’s structure offer a common vocabulary for use in the assignment description and discussions.

In Chapter 2 of [2], a simple n-armed bandit problem is described. We began a special topic course on Machine Learning with a number of exercises related to this problem. Given a complete implementation with an ²greedy agent, students were asked to focus on possible

must implement an Environment subclass and define its three abstract methods: init, startTrial, and step. The init method initializes an instance of an Environment subclass. The method is responsible for constructing and initializing any necessary data structures. If necessary, it can load initial conditions, or, in cases where the environment is adaptive, can reset the environment to its original, na¨ıve condition. This method is called when the simulation first begins. The startTrial method must prepare the environment for the start of a new trial (i.e. episode) within an ongoing simulation. The method must create and return the first State of the new trial. This method is called at the beginning of each trial. The step method is the third abstract method in the Environment class. This method receives the agent’s most recent action as a parameter and it returns the immediate reward for this action, as well as a description of the new state of the environment. This method is called once on each step of the simulation. C. The Simulation Class The Simulation class is the third and final abstract class of the standard Java interface. Instances of this class manage the interactions between an agent and an environment. This class contains complete implementations of the init, startTrial, and step methods for simulations. Each of these methods calls the Agent and Environment instances’ versions of the same method, often using the return value of one of the calls as the parameter for the other. The classes also contain methods that run the simulation for a set number of steps or trials. To employ this class, a user only needs to define the one abstract method, collectData, which periodically collects and potentially prints out data from the simulation for logging purposes. III. T HE VALUE

OF

modifications. Students were given choices of various n-armed bandit projects: comparison of the (1) softmax, (2) reinforcement comparison, and (3) pursuit policies with the ²-greedy policy regarding average rewards and optimality. In the next assignments, students were given the task of implementing the extended Environment classes for various problems (e.g. the Gambler’s Problem of [2], a simplification of the dice game Pig) for a given Agent specification. Once comfortable with the entire framework, the students were well prepared to delve into the more complex array of Monte Carlo and TD algorithms. IV. C ONCLUSION The presented Java library for programming RL software is a natural addition to a RL module in any Artificial Intelligence course. The library, with its standard interface, TD-specific subclasses, fully implemented example of a RL problem, and complete documentation, is a valuable educational tool. Using the interface as a foundation, the library inspires a diverse array of programming assignments, ranging from straightforward implementations of a RL problem to comparative studies and cumulative projects. Through the simple, base requirement of implementing the supplied interface, these assignments provide objective grading rubrics, approachable design, educational summaries of theory, and experience with cooperative software development. The incorporation of the library into an Artificial Intelligence course is beneficial for both the instructor and the students.

R EFERENCES [1] R. S. Sutton and J. C. Santamaria, “A standard interface for reinforcement learning software,” Available: http://www-anw.cs.umass.edu/˜rich/RLinterface/RLinterface.html. [2] R. S. Sutton and A. G. Barto, Reinforcement Learning: an introduction. Cambridge, Massachussetts: MIT Press, 1998. [3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Englewood Cliff, New Jersey: Prentice-Hall, Inc., 1995, ch. 20. [4] T. M. Mitchell, Machine Learning. Boston, Massachusetts: McGraw-Hill Companies, Inc., 1997, ch. 13. [5] R. S. Sutton and J. C. Santamaria, “A standard interface for reinforcement learning software in C++, version 1.1,” Available: http://www-anw.cs.umass.edu/˜rich/RLinterface/RLI-Cplusplus.html.

des documents recommandant

[image: alt]

Learning Java

Learning Java, http://www.oreilly.com/catalog/learnjava3/, where you'll find the source It would not be overdoing it to say that Java caught on like wildfire. Volume 29, 1999 (http://www.spirus.com.au/papersAndTalks/javaVsC++.pdf).

[image: alt]

Reinforcement Learning: the basics

Sep 12, 2016 - In an MDP, a memory of the past does not provide any useful advantage Policy iteration is implemented as an â€œactor-criticâ€� method, updating ...

[image: alt]

Using C&IT for learning and teaching

in higher education, especially among non-traditional students, has placed a new ... For all these reasons, C&IT is becoming an important component of teaching and ... collaborative projects using email, videoconferencing, a shared Web site or a ...

[image: alt]

Index 2011 - CPGE Learning Resources for English

GOOGLE'S ROBOCARS. The Times (2010). CNN (2010). 172 ... LEARNING IN DORM, BEACAUSE CLASS IS ON THE WEB. US EXECUTION DRUGS ...

[image: alt]

overhead - Learning Resources

formas nÃ£o puderem ser construÃdas correctamente, discuta as possÃveis razÃµes de tal facto. (Por exemplo, pode ser que os lados nÃ£o tenham o mesmo ...

[image: alt]

3+ PreK+ - Learning Resources

Demandez aux Ã©lÃ¨ves d'observer, de rÃ©aliser des croquis et de formuler des ... Guidez les Ã©lÃ¨ves dans leurs observations pour qu'ils rÃ©alisent des croquis et ...

[image: alt]

Learning Java with JBuilder

how to create and manage projects, design your user interface, and compile Database authentication allows you to password protect your JDataStore. JDK compatibility issues. Resource Strings wizard to eliminate hard-coded strings ..

[image: alt]

Learning Java - inweboftp

we'll see what Java is capable of doing; fancy web pages are fun and runtime system performs all the normal activities of a real processor, but it does so in a safe, person will quickly grow tired of answering questions; an inexperienced

[image: alt]

Designing a Reinforcement Learning-based

application of reinforcement learning to large-scale strategy games. ... state-of-the-art machine learning algorithms. In this paper, we try to ... In strategic and tactical levels of operation, spatial Real-Time Strategy Games: A new AI Researc

[image: alt]

A reinforcement learning adaptive fuzzy controller for robots

SCARA robot arm verify the effectiveness of our approach. ... Section 4 illustrates the operation of the proposed reinforcement learning systems using SCARA.

[image: alt]

Analysis of Reinforcement Learning - LIG Membres

precedence. We use semantic communication to ware failure or the black smoke that results from hardware develop optimal communication; we plan to ad-.

[image: alt]

Reinforcement Learning, yet another ... - Emmanuel Rachelson

Introduction. General view. Online problems. Offline problems. Overview. The madhatter's casino. Brainstorming. 2 / 30. Page 5. Introduction. General view.

[image: alt]

Foundations of Teaching for Learning 4: Curriculum Jean-FranÃ§ois ...

cours et a confirmÃ© son identitÃ© par des photos prises avec une webcam et par l'analyse de sa dynamique de frappe lors de la soumission de travaux.

[image: alt]

Learning to reach by reinforcement learning using a ... - KIT-H2T

learning of motor skills, like the tying of a shoe lace, whereas such methods are ... (A. Ude, personal communication) that the results of such a plain learning encing the actions of others: the mechanisms of social interaction. In: Computatio

[image: alt]

Reinforcement Learning in Continuous Time and ... - Research

and Î·M = 10.0, in the following simulations unless otherwise specified. Ïƒ = Ïƒ0 min[1 where s is a component-wise sigmoid function and n(t) is the noise.

[image: alt]

Contrasting Reinforcement Learning and Forward-Error Correction

PDF distance (percentile) sensor-net. Lamport clocks provably introspective communication ... [4] A. Newell, S. Hawking, and E. Clarke, â€œA methodology for the.

[image: alt]

Hebbian reinforcement learning in a modular

major role of self-feeding dynamics in the processes of ... The aim of a reinforcement learning algorithm is to mod- In concrete terms, every link such that d.

[image: alt]

Habits, action sequences and reinforcement learning - Research

from the Australian Research Council #FL0992409, the National Health & Medical. Research immediate, or at least rapidly acquired, solutions to new problems and, indeed answer this question, we need a cost-benefit analysis, i.e. what the ag

[image: alt]

Efficient reinforcement learning: computational theories, neuroscience

Mar 19, 2007 - author's benefit and for the benefit of the author's institution, for ... vior could be explained by a reinforcement learning algor- ithm [26]. ... body and an external world is coarsely represented by a ... both assumptions that are

[image: alt]

Foundations of Teaching for Learning 7: Being a ...

17 nov. 2014 - Foundations of Teaching for Learning 7: Being a Professional. Commonwealth Education Trust. NOM DE L'Ã‰TUDIANT(E). Jean-FranÃ§ois CECI.

[image: alt]

Foundations of Teaching for Learning 6: Introduction to

11 juil. 2014 - Description : You will consider various techniques which help to assess student learning. The course also will help you to acquire the skills to develop and use appropriate assessment procedures. This course is part of the Foundations

[image: alt]

Untitled - CPGE Learning Resources for English - LycÃ©e de la

ecology, she had a secondary, academic interest in how the family would react and was well ... accounting for 44 hours while leadership training for school management takes 42 hours. stimulus funds to finance comparative studies. ... Unity now r

[image: alt]

bio-mimetic action selection & reinforcement learning

Sep 13, 2016 - 4. PFC & off-line learning. âˆ’. Indirect reinforcement learning. âˆ’. Replay during sleep. 5. Multiple regression analysis with bootstrap. Q Î´ Î²*.

[image: alt]

Contrasting Reinforcement Learning and Gigabit Switches

work to measure the mutually empathic nature of collectively heterogeneous information. We added 10GB/s of Wi-Fi throughput to our net- work to prove random ...

×
Report Java Resources for Teaching Reinforcement Learning

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

