IRT SystemX

Problem: Based on allocating and hosting N VMs on a physical infrastructure of X Serveurs, what is the best manner to optimally place workloads to minimize ...
2MB taille 4 téléchargements 357 vues
Dynamic Resource Allocation in Clouds: Smart Placement with Live Migration Makhlouf Hadji Ingénieur de Recherche [email protected]

Avec : Djamal Zeghlache (TSP) [email protected]

FONDATION DE COOPERATION SCIENTIFIQUE

2

NOS VALEURS



Excellence ❷ Souplesse

- Talents - Résultats - Echanges

- Fonctionnement - Partenariat - Projets ❸

Rigueur

- Propriété Intellectuelle - Confidentialité - Exécution 3

PROGRAMMES DE R&D Ingénierie numérique des Systèmes et Composants

4

PROJETS R&D Projets opérationnels depuis le lancement

9 15,5

Projets Opérationnels M€ Financement Industriel

29 ETP/an sur 3 ans 110 42 Partenaires Industriels 12 Partenaires Académiques

Thèses

5

I- Smart Placement in Clouds

Smart Placement in Clouds VM Placement problem Problem: Based on allocating and hosting N VMs on a physical infrastructure of X Serveurs, what is the best manner to optimally place workloads to minimize different infrastructure costs ?

Non optimal placement ESX 1

ESX 2…

ESX N

VMs demand management

VMs placement strategy

Cloud End-Users

???

Optimal placement ESX 1

ESX 2…

ESX N ESX 1

Benefits 

Resources optimization,



Minimization of infrastructure costs,



Energy consumption optimization.

Challenges of the problem: Exponential number of cases to enumerate.



7

ESX 2…

ESX N

Infrastructure servers

Define the best strategy to place VMs workloads leading to optimally reduce infrastructure costs.

Smart Placement in Clouds



French Providers Point of View

8

Smart Placement in Clouds

Due to fluctuations in users’ demands, we use Auto-Regressive (AR(k)) process, to handle with future demands:

Gestion de la demande de VM

Utilisateurs des services Cloud

Forcasting & Scheduling

k

d t    i d t i   t

large small

i 1

ESX 1

Problem Complexity : NP-Hard Problem: One can construct easily a plynomial reduction from the NP-Hard notary problem of the BinPacking.

ESX 2…

ESX N

Infrastructure serveurs

9

Smart Placement in Clouds Mathematical formulation: N

Formulation as ILP: The corresponding mathematical model is an Integer Linear Programming: difficulties to characterize the convex hull of the considered problem and the optimal solution.

I

N

I

min Z    ij yij   Pj xij i 1 j 1

i 1 j 1

Subject To : xij  Cij yij , j  I , i  1, N N

x i 1

ij

 d j , j  I

xij  N , i, j 1 if VM j is hosted in server i yij    0 else.

10

Smart Placement in Clouds Minimum Cost Maximum Flow Algorithm

Instance i

(2; 0,23)

S

T

Legend: (capacity; cost)

11

Smart Placement in Clouds Small Instance

Minimum Cost Maximum Flow Algorithm

(2; 0,23)

Medium Instance

S

T (2; 0,23)

12

Smart Placement in Clouds Simulation Tests: Case of (0;1) Random Costs

Random Hosting Costs Scenario We consider (0; 1) Random hosting costs between each couple of vertices (a, b), where a is a fictif node, and b is a physical machine (server).

13

Smart Placement in Clouds Simulations Tests: Case of Inverse Hosting Costs:

Inverse Hosting Costs Scenario We consider inversed hosting costs function between each couple of vertices (a, b), where a is a fictif node, and b is a physical machine:

Where

1 g ab  if Cab  0, otherwise g ab   f (Cab ) Cab represents the available capacity on the considered arc. f est une fonction non nulle.

14

II- Live Migration of VMs

Live Migration of VMs



Migration process:

Xen

ESX

KVM

Hyper-V

16

Live Migration of VMs Polyhedral Approachs

Polytops, faces and facets M in  c x j

j

Subject To constraints:

 1x 1

aij x jbi , i1,...,m xi  0,1 , i  1,..., n

x* facets face

 2x 2 20

Live Migration of VMs Polyhedral Approachs

Some Valid Inequalities of our Problem: 

Decision Variables:



Z ijk  1 if A VM k is migrated from i to j (0 else). Prevent backword migration of a VM:



Z ijk  Z jlk '  1 Server’s destination uniqueness of a VM migration: m'

Z

j 1, j  i



1

Servers’ power consumption limitation constraints: m'

qi

 

ijk

Etc…

i 1 k 1

pk zijk   p j ,max  p j ,current 1  y j 

18

Live Migration of VMs max M 

m'

P i 1

i ,id l

qi

m'

m'

i 1

j 1 k 1

yi     p 'k zijk

Polyhedral Approachs

Subject To : zijk  z jlk '  1, i  1, m, j  i, m', k  1, qi , k '  1, q j , l  1, m', l  j , k  k ' m'

z

j 1, j  i m'

1

ijk

qi

 p i 1 k 1 m'

k

zijk  Pj , max  Pj ,cu rren t 1  y j 

qi

 z j 1 k 1

ijk 

qi yi

 m'  P   j ,cu rren t  m' j 1  yi  m'   Pj , max   i 1     zijk t k  T0 1 if VM k is migrated from i to j, zijk   0 otherwise 1 if server i is idle yi   0 otherwise

19

Live Migration of VMs Polyhedral Approachs Number of used servers when taking into account Migrations

20

Convergence Time (in seconds) of Migration Algorithm:

21

Live Migration of VMs Polyhedral Approachs Percentage of Gained Energy when Migration is Used

5

10

15

20

25

30

10

35,55

36,59

00

00

00

00

20

27,29

34,00

35,23

38,50

00

00

30

17,48

27,39

35,21

40,32

41,89

36,65

40

16,77

18,85

22,02

32,31

39,90

40,50

50

10,86

16,17

19,85

22,30

39,20

36,52

60

08,63

14,29

18,01

22,13

25,15

30,68

70

08,10

14,00

14,86

15,90

22,91

23,20

80

07,01

10,20

10,91

15,34

17,02

21,60

90

06,80

09,32

10,31

14,70

16,97

19,20

100

05,90

07,50

08,40

12,90

16,00

14,97

22

Thank you