Introduction to inverse problems. Applications to high ... - Mugnier

image restoration, e.g., for imaging through turbulence (w/ or without AO);. ☞ image reconstruction in ... Lenslet array. ❏ image ... Microlens array. ❏ Principle: ...
418KB taille 2 téléchargements 279 vues
Telecom ParisTech

THE FRENCH AEROSPACE LAB

Introduction to inverse problems. Applications to high angular resolution Astronomy

L. Mugnier – 2016

ONERA / Dept Optique Théorique & Appliquée, HAR team

http://www.onera.fr/dota [email protected]

1

Telecom ParisTech

Context ❏ Aim of this talk: introduction to methods for solving “inverse problems”, including image deconvolution;

❏ Common framework for problems and methods in a wide variety of fields: ☞ X-ray tomography; ☞ ultrasound echography (medical diagnosis, Non-Destructive Testing); ☞ computer vision (stereo, etc.); ☞ geophysics; L. Mugnier – 2016

☞ wavefront sensing (Hartmann-Shack, curvature, phase diversity); ☞ image restoration, e.g., for imaging through turbulence (w/ or without AO); ☞ image reconstruction in interferometry, ☞ etc.

THE FRENCH AEROSPACE LAB

2

Telecom ParisTech

Inverse problem: a contrario definition ❏ Estimation of physical parameters from indirect measurements parameters; unknowns



instrument

→ measurements; data

❏ Wavefront sensing by Shack-Hartmann Unknowns: wavefront (phase)

Measurements: local slopes

Lenslet array Sensor

L. Mugnier – 2016

❏ image restoration object → atmosphere+telescope+camera

→ image

❏ image reconstruction in long baseline optical interferometry object → atmosphere+interferometer → visibilities Physics → model the data, i.e., compute the direct problem. THE FRENCH AEROSPACE LAB

3

Telecom ParisTech

Considered “direct model”, i.e. model of the data ❏ linear model: y = Hx + n,

H linear operator (matrix in finite dimension), y, vector of measurements (image pixels, S-H slopes,...), x, vector of unknowns (object, wavefront, etc.), n measurement noise.

L. Mugnier – 2016

❏ convolution case: ☞ H linear and shift-invariant ⇔ Hx = h ⋆ x ☞ h : point spread function (PSF) : x = δ ⇒ h ⋆ x = h. ˜ = FT(h) : transfer function. ☞ h ☞ Direct model:

y =h⋆x+n

where

˜ x+n ˜ = h.˜ ˜ y

THE FRENCH AEROSPACE LAB

4

Telecom ParisTech

“Classical” resolution of an inverse problem

❏ One searches for

ˆ ; y = Hx ˆ x (

❏ Invertible (linear) problem ∀y:

existence uniqueness

❏ If dim(x) > dim(y), not enough measurements for a unique solution (under-determined pb)

❏ If dim(x) < dim(y), usually no solution: noise makes it impossible to fit all L. Mugnier – 2016

data (over-determined pb).

❏ existence and uniqueness ∀y ⇔ H square and invertible ❏ Not often the case + accomodating more data is desirable!

THE FRENCH AEROSPACE LAB

5

Telecom ParisTech

Least Squares method One searches for

ˆ x

that minimizes the Least Squares criterion:

ˆ k2 = inf ky − Hxk2 ky − H x x

(1)

Legendre (1805) and Gauss (between 1795 and 1809) (estimation of the Earth’s ellipticity from arc measurements → definition of the meter)

❏ existence guaranteed (in finite dimension): ˆ , where P projector on Im(H). (1) ⇔ P y = H x ❏ uniqueness guaranteed: ˆ onto N(H)⊥ if N(H) 6= {0} one projects x ˆ norm → LS solution of minimal norm x min , or Generalized Inverse.

L. Mugnier – 2016

ˆ = (H t H)−1 H t y ❏ analytical solution: x N(H)

^ x min norm N(H)

y

x

T

^ x

(generally)

Im H

H Py H

THE FRENCH AEROSPACE LAB

6

Telecom ParisTech

Hartmann-Shack Wave Front Sensor incident wavefront Microlens array

Sub−images

01 1010 10 1010 1010

Sensor

L. Mugnier – 2016

α

0 1 1 0 0 1 1 0 0 1 0 1 11 00 0 1 1 0 0 0 1 01 1 1 0 0 1 0 1 1 11 00 0 0 1 00 11 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 00 11 00 11

αf

f

❏ Principle: measurement of local slopes of wavefront; ❏ Works with point sources and extended objects, w/ large spectral bandwidth; ❏ Estimation of wavefront from local slopes. THE FRENCH AEROSPACE LAB

7

Telecom ParisTech

Polynômes de Zernike

❏ Polynômes orthonormés sur D(0, 1) ; ❏ Décomposition de toute phase sur cette base de « modes » : L. Mugnier – 2016

φ(u, v) =

P

j

φj Zj (u, v)

❏ Ordre radial n ր ⇒ Fréq. spatialeր

THE FRENCH AEROSPACE LAB

8

Telecom ParisTech

Hartmann-Shack: direct problem and LS solution 



❏ Data: K sub-apertures → 2 K slopes yu/v,i = y Z 1 ∂φ(u, v) yu,i = du dv + noise S i Si ∂u ❏ Linear direct model: y = Hx + n with: x = {xj }, φ(u, v) =

jX max

xj Zj (u, v),

L. Mugnier – 2016

j=2

x   ←j max −→       H = 2K  .   y .

❏ Problem: estimate the wavefront x from the measured slopes y ˆ = (H t H)−1 H t y ❏ LS solution: x

THE FRENCH AEROSPACE LAB

9

Telecom ParisTech

Hartmann-Shack simulation ❏ 12 × 12 sub-apertures, central obstruction d/D = 0.33 ; ❏ K = 100 illuminated sub-apertures ⇒ 2.K = 200 slope measurements; ❏ data model: y = Hx + n; ❏ unknowns: x, decomposed on jmax − 1

sub-apertures

True phase

Zernike polynomials;

L. Mugnier – 2016

❏ n zero-mean white Gaussian (and approximately stationary), SNRslopes

such that

= 100;

❏ H of size 2.K × jmax .

Data: slopes in x and in y

THE FRENCH AEROSPACE LAB

10

Telecom ParisTech

LS wavefront reconstructions

L. Mugnier – 2016

True phase

LS jmax

=3 = 2.6 rad2

σϕ2 = 3.5 rad2

2 σerr

LS jmax

LS jmax

2 σerr

= 55 = 0.8 rad2

= 105 = 1.0 rad2

LS jmax 2 σerr

= 21 = 1.1 rad2

LS jmax

= 153 = 210 rad2

2 σerr Reconstruction quality depends on jmax optimal jmax depends on SNRslopes . 2 σerr

THE FRENCH AEROSPACE LAB

11

Telecom ParisTech

The convolutive case: LS vs inverse filter ˜x ˜ = h.˜ ❏ y =h⋆x⇒y     ˆ = FT−1 hy˜˜ : inverse filter x   → or    ˜ˆ ) (f ) = 0 for frequencies f such that h ˜ (f ) = 0 idem + (x ❏ This solution minimizes ky − h ⋆ xk2 ; L. Mugnier – 2016

⇒ it is a Least Squares solution; ❏ Moreover it is of minimal norm (“energy”).

THE FRENCH AEROSPACE LAB

12

Telecom ParisTech

Example of Least Squares restoration

original signal

noisy image

LS restoration

L. Mugnier – 2016

❏ interpretation of the failure: equivalence Least Squares/ inverse filter. ❏ LS: works if “there are much more data than unknowns”, i.e., dim x ≪ dim y.

THE FRENCH AEROSPACE LAB

13

Telecom ParisTech

Regularization: general principle ❏ Data alone is not enough: many very different solutions are compatible w/ the data.

❏ Regularization: introduction of prior knowledge on the solution ☞ parametric: we have a model for x as a function of a few parameters θ : ˆ = arg min ky − Hx(θ)k2 . θ θ

Example:

x=disc, θ =radius, position, brightness.

L. Mugnier – 2016

☞ non-parametric: search for the solution, compatible w/ data, that best fits our prior knowledge:

ˆ = arg min ky − Hxk2 + α R(x); ✓ the “deterministic way”: x x

✓ the “stochastic way”: Bayesian estimation.

THE FRENCH AEROSPACE LAB

14

Telecom ParisTech

Stochastic framework (1): the Maximum Likelihood method ❏ y = Hx + n, where n models uncertainties on the measurement (detection, transmission, imperfection of data model,...)

❏ Common statistical model for n : probability density function pn . −1 n) Ex 1 : Gaussian noise. pn (n) ∝ exp(− 12 nt Cn P 2 1 Ex 2 : stationary white Gaussian noise. pn (n) ∝ exp(− 2σ 2 k nk ) ❏ Likelihood of the data: proba. to measure y knowing that the true object is x: p(y|x) = pn (y − Hx) L. Mugnier – 2016

❏ Maximum Likelihood estimator:

ˆ M L = arg max p(y|x) x x

one searches for the object x that makes the data y the most likely

❏ ML for stationary Gaussian  noise:  1 ˆ M V = arg max exp − 2 ky − Hxk2 = arg min ky − Hxk2 ! x 2σ x x THE FRENCH AEROSPACE LAB

15

Telecom ParisTech

Graphical interpretation of Maximum Likelihood

L. Mugnier – 2016

p(y | x )

p(y | x ) 2

1

y measured y one chooses the object x that makes the data y the most likely. THE FRENCH AEROSPACE LAB

16

Telecom ParisTech

Stochastic framework (2): Bayesian estimation ❏ Data (slopes, image, etc.): y = Hx + n ❏ Bayes’ theorem : p(y|x) p(x) p(x|y) = | {z } p(y) posterior law

❏ Maximum A Posteriori (MAP) :

∝ p(y|x) × | {z } likelihood

p(x) |{z}

prior law on x

L. Mugnier – 2016

ˆ given the data y one searches for the most likely x ❏ p(y|x) : instrument model + statistics of noise.  1 2 Ex. : exp − 2σ 2 ky − Hxk . Maximization ↔ fidelity to data ❏ p(x) : prior knowledge on solution

Ex. : statistical information (turbulence) / qualitative (image). Maximization ↔ fidelity to the prior ⇒ regularization

THE FRENCH AEROSPACE LAB

17

Telecom ParisTech

Statistical characterization of the turbulent phase ❏ Kolmogorov ⇒ x zero-mean Gaussian:

p(x) ∝ exp

L. Mugnier – 2016

❏ Cx (j, j) = σx2j , in the Zernike polynomial basis:



− 12 xt Cx−1 x ;

THE FRENCH AEROSPACE LAB

18

Telecom ParisTech

MAP estimation in the Gaussian case ❏ Gaussian noise, Gaussian a priori law for the phase; ❏ Posterior law given by Bayes’ theorem: p(x|y) ∝

p(y|x) | {z }

×

model + noise statistics



p(x) |{z}

prior on x





1 1 t −1 t −1 ∝ exp − (y − Hx) Cn (y − Hx) × exp − x Cx x 2 2

1 1 t −1 t −1 ˆ MAP = arg max p(x|y) = arg min (y − Hx) Cn (y − Hx) + x Cx x ❏ x x x 2 | {z } |2 {z } − ln p(y|x)

L. Mugnier – 2016



− ln p(x)

❏ MAP solution: ˆ MAP = H x

t

Cn−1 H

+

 −1 −1 Cx

H t Cn−1 y , M y

❏ Linear solution: specific to the Gaussian case, M is called the reconstruction matrix. THE FRENCH AEROSPACE LAB

19

Telecom ParisTech

MAP wavefront reconstruction (Gaussian case) ❏ We search for the most likely phase given the data: × p(x) p(x|y) ∝ p(y|x) |{z} | {z } model + noise statistics

prior on x

L. Mugnier – 2016

❏ white Gaussian noise + Gaussian prior law p(x) for turbulence (Kolmogorov):

True phase

MAP

σϕ2 = 3.5 rad2

2 σerr = 0.3 rad2

best ML/LS jmax

= 55

2 σerr = 0.8 rad2

MAP ⇒ optimal estimation

❏ Extension for control in AO: Kalman filtering. THE FRENCH AEROSPACE LAB

20

Telecom ParisTech

Simulation of AO-corrected long exposure image

L. Mugnier – 2016

object x

PSF h

image y

=h⋆x+n

Partial correction ⇒ deconvolution necessary VLT-NAOS case:

Mv = 11 , λ = 0.5 µm , field of view 0.8 arcsec , D/ro ≈ 60,

seeing 0.73 arcsec ,

SR = 2.1% THE FRENCH AEROSPACE LAB

21

Telecom ParisTech

Maximum Likelihood restoration

L. Mugnier – 2016

Image

Object restored by Max. Likelihood

❏ Homogeneous whiter Gaussian noise ⇒ ML = inverse filter.

THE FRENCH AEROSPACE LAB

22

Telecom ParisTech

MAP in the Gaussian case: application to deconvolution ❏ Criterion to be minimized (Cn = σ 2 Id kHx − yk2 J(x) , − ln p(x|y) = + 2σ 2 ❏ In the Fourier domain: X |h(f ˜ )˜ x(f ) − y˜(f )|2 → J(x) = 2 σ2 f

and

¯ 6= 0): x

1 ¯ ), ¯ )t Cx−1 (x − x (x − x 2 2 ˜ 1 X |˜ x(f ) − x ¯(f )| + 2 Sx (f ) f

ˆ MAP = (H t H + σ 2 Cx−1 )−1 (H t y + σ 2 Cx−1 x ❏ Solution: x ¯) ❏ In the Fourier domain:

L. Mugnier – 2016



2 ˜ ⋆ (f ) h σ /Sx (f ) ˆ x ˜MAP (f ) = y˜(f ) + 2 2 ˜ ˜ )|2 + σ 2 /Sx (f ) |h(f )| + σ /Sx (f ) |h(f

˜ x ¯(f )

Inverse filter for high SNR’s, prior solution for very low SNR’s. Interpretation :

˜ˆLS (f ) + (1 − λ)(f ) x ˆ˜MAP (f ) = λ(f ) x ˜ x ¯(f )

❏ MAP under Gaussian stats (for x and n) ⇔ LS + quadratic regul. ⇔ Wiener. THE FRENCH AEROSPACE LAB

23

Telecom ParisTech

L. Mugnier – 2016

MAP under Gaussian statistics

Original object

simulated AO-corrected image

restored

THE FRENCH AEROSPACE LAB

24

Telecom ParisTech

MAP under Gaussian stats / Wiener on experimental AO-corrected image

L. Mugnier – 2016

AO-corrected (yes!) image

Wiener

❏ Ganymede : satellite of Jupiter. ❏ image taken on the BOA (Banc d’optique adaptative ONERA), at 1.52m telescope of Observatoire de Haute Provence, 1997. THE FRENCH AEROSPACE LAB

25

Telecom ParisTech

Maximum A Posteriori deconvolution (known PSF) ❏ Direct model: y = h ⋆ x + n ❏ Maximum A Posteriori estimator: ˆ MAP = arg max x x

p(y/x) | {z }

fidelity to the data

=

arg min [L(x/y, h) x

×

p(x) |{z}

a priori on object

+

αR(x)]

❏ No analytical solutions as soon as L or R is not quadratic, or constrained minimization (e.g. positivity) ⇒ numerical minimization.

L. Mugnier – 2016

❏ a priori info on object: positivity, possibly support, spatial structure. E.g.: smooth (PSD) / smooth with sharp edges / spikes / spikes + smooth

❏ noise model: photon noise, mixture photon + detector noises. ❏ extension : PSF imperfectly known (myopic deconvolution).

THE FRENCH AEROSPACE LAB

26

Telecom ParisTech

Edge-preserving prior ❏ GaussianX prior ⇐⇒ quadratic regularization (L2 ) R(x) = |(Dx)(k)|2 , D differential operator

ψ

k

Example :

(Dx)(k) = x(k) − x(k − 1)

⇒ noise smoothed out

Do

but large-amplitude jumps (edges) strongly penalized.

❏ L1 regularization: R(x) =

X

|(Dx)(k)| a

k

b

L. Mugnier – 2016

⇒ penalty independent of the jump’s stiffness. ψ ❏ L1 −L2 regularization: R(x) =

X k

ψ(|(Dx)(k)|)

⇒ noise smoothed out and edges preserved.

Do THE FRENCH AEROSPACE LAB

27

Telecom ParisTech

Edge-preserving restoration:

L. Mugnier – 2016

linear-quadratic regularization

Quadratic

Linear-Quadratic

regularization

regularization

Linear-quadratic regularization −→ good restoration of edges

THE FRENCH AEROSPACE LAB

28

Telecom ParisTech

L. Mugnier – 2016

Sensitivity of AO-corrected OTFs to seeing variations

0.65, 0.73, 0.79, 0.85 and 0.93 arcsec. Simulated images correspond to a seeing of 0.73 arcsec. FTO for 5 differents seeing values:

THE FRENCH AEROSPACE LAB

29

Telecom ParisTech

Classical deconvolution with incorrectly estimated PSF Image simulated with PSF @ seeing = 0.73 arcsec.

L. Mugnier – 2016

“reference” PSF = average PSF for seeing ∈

[0.65, 0.93] arcsec.

Deconvolution with

Deconvolution with

reference PSF

true PSF

“classical” deconvolution needs a good estimate of the PSF

THE FRENCH AEROSPACE LAB

30

Telecom ParisTech

Principle of “myopic” deconvolution ❏ Direct model: y = h ⋆ x + n ❏ Joint estimation of x and h by Maximum A Posteriori: ˆ [ˆ x, h]

=

arg max p(y/x, h) × | {z } x,h fidelity to data

=

×

a priori on object

arg min [L(x, h/y) + x,h

p(x) |{z}

R(x) +

p(h) |{z}

a priori on PSF

Rh (h)]

❏ L: (Weighted) Least Squares; R: quadratic or linear-quadratic regularization

L. Mugnier – 2016

❏ Rh : necessary. Quadratic regularization (long exposure image):

2 ˜ ˜ m (f ) h(f ) − h X 1 Rh (h) = , 2 Sh (f ) f  2 ˜ )−h ˜ m (f )| Sh (f ) = E |h(f

THE FRENCH AEROSPACE LAB

31

Telecom ParisTech

Myopic deconvolution Image simulated with PSF @ seeing = 0.73 arcsec.

L. Mugnier – 2016

“reference” PSF = average PSF for seeing ∈

[0.65, 0.93] arcsec.

Deconvolution with

Myopic

PSF=mean PSF

deconvolution

Myopic deconvolution −→ Good restoration of the object’s photometry

THE FRENCH AEROSPACE LAB

32

Telecom ParisTech

MISTRAL : myopic deconvolution of AO-corrected images MISTRAL = Myopic Iterative STep-preserving restoration algorithm : Fine model for mixture of noises + edge-preserving prior + myopic.

L. Mugnier – 2016

[Conan et al., Appl. Opt., 1998.

Fusco et al., A&A, 1999.

Mugnier et al., JOSA A, 2004.]

Double star GJ 263; angular separation 0.040 arcsec. THE FRENCH AEROSPACE LAB

33

Telecom ParisTech

MISTRAL on images from BOA @ OHP’s 1.52m telescope

(b)

(a)

L. Mugnier – 2016

AO-corrected image [1997/09/28; 20:18 UT]

MISTRAL

(d)

(c)

synthetic image JPL/NASA/Caltech

synthetic image + 1.52 telescope PSF

Ganymede: satellite of Jupiter. THE FRENCH AEROSPACE LAB

34

Telecom ParisTech

L. Mugnier – 2016

MISTRAL on NAOS-Conica images at VLT Active Galaxy Nucleus NGC1068

M-band image (4.8µm) obtained after recentering ∼

100 images. Images courtesy D. Gratadour. THE FRENCH AEROSPACE LAB

35

Telecom ParisTech

Further reading ❏ Introduction to inverse problems: Des données à la connaissance de l’objet : le problème inverse, L. Mugnier, Sect. 9.6 of L’observation en astrophysique, P. Léna et al., EDP Sciences, 2008;

❏ reference book on inverse problems: Bayesian Approach to Inverse Problems, edited by J. Idier, ISTE / Wiley, 2008. Chap. 1 to 3: basic theory. Chap. 10: Inversion in optical imaging through atmospheric turbulence;

❏ Selected papers: ☞ fundamental paper on inverse problems: Image Reconstruction and Restoration: Overview of Common Estimation Structures and Problems, G. Demoment, IEEE Trans. Acoust. Speech Signal Process., 37, 2024–2036, 1989;

☞ deconvolution of AO-corrected images: MISTRAL: a myopic edge-preserving image restoration method, with application to L. Mugnier – 2016

astronomical adaptive-optics-corrected long-exposure images, L. M. Mugnier, T. Fusco, and J.-M. Conan, J. Opt. Soc. Am. A, 21, 1841–1854, 2004.

☞ review on image reconstruction in interferometry: Advanced imaging methods for long-baseline optical interferometry, G. Le Besnerais, S. Lacour, L. M. Mugnier, E. Thiébaut, G. Perrin, and S. Meimon, IEEE Journal of Selected Topics in Signal Processing, 2, 767–780, 2008. THE FRENCH AEROSPACE LAB

36