high-order harmonic generation & attosecond science - 石川顕一

gas jet harmonics of high orders. Highly nonlinear optical process in which the frequency of laser light is ... Simulation. 10 .... Simple explanation of the cutoff law.
7MB taille 1 téléchargements 39 vues
Advanced Radiation Engineering 放射線応用工学E Kenichi Ishikawa (石川顕一) http://ishiken.free.fr/english/lecture.html [email protected]

高次高調波発生と アト秒科学 high-order harmonic generation & attosecond science

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

High-harmonic generation 高次高調波発生

10/23 No. 2

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

高調波発生 (Harmonic generation) 結晶、ガス等(crystal, gas)

Linear optical effect 線形光学効果(弱い光)

ω

ω

Material response is linear in light intensity 物質の応答が、入射光強度に比例 非線形光学効果(強い光)€ € ω Nonlinear optical effect Nonlinear material response 物質の応答が、入射光強度に非線形に依存

ω,3ω,5ω,

波長変換 (frequency conversion)

D = ε0 E + P



P = ε0 [ χ E + χ E + χ E +] (1)

€ €

(2)

2

(3)

3

非線形分極 (nonlinear) 線形分極 linear polarization

反転対称な媒質では、 χ

(2)

for a medium with inversion symmetry

∂ 2D ∇ × ∇ × E = −µ 0 2 ∂t €

€3ω:3次高調波(3rd harmonic) 5ω:5次高調波(5th harmonic)

€ =0 €

10/23 No. 3

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

摂動論的高調波発生 (perturbative harmonic generation) 3rd harmonic 3次高調波 Ionization 電離

5th harmonic 5次高調波 Ionization 電離 仮想準位 Virtual level

ω Virtual level 仮想準位

ω ω € € €

ω €

3ω

€ € Ground state 基底状態 €

ω ω

5ω

ω €ω

Ground state 基底状態

€ 次数が高くなるほど、発生効率は減少。 €

Harmonic order ↑

Efficiency ↓ 10/23 No. 4

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

高次高調波発生 High-harmonic generation (HHG) discovered in 1987 Intense laser pulse

gas jet

harmonics of high orders

Highly nonlinear optical process in which the frequency of laser light is converted into its integer multiples. Harmonics of very high orders are generated. ! !

新しい極端紫外・軟エックス線光源として注目される。 New extreme ultraviolet (XUV) and soft X-ray source 10/23 No. 5

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

How high orders?

Harmonic spectrum 高調波スペクトル Wahlström et al., Phys. Rev. A 48, 4709 (1993)

041111-3

Takahashi et al.

Takahashi et al., Appl. Phys. Lett. 93, 041111 (2008)

Harmonic intensity (arb. unit)

1015 W/cm2

10

2

10

1

10

0

10

-1

10

-2

10

-3

10

-4

10

-5

10

-6

10

-7

10

-8

FIG. 4. !Color online" Experimentally obtained harmonic spectra in Ar. Red and blue profile depict the spectra with #0 = 0.8 !m pump and #0 = 1.4 !m pump, respectively. Both HH spectra are normalized to the peak intensity. The laser focused intensity is adjusted to generate HH under a neutral condition for both wavelengths. The inset shows a measured two dimensional harmonic spectrum image driven by 1.4 !m pump.

800 nm, 1.6×1014 W/cm2

Only odd orders 奇数次のみ

Simulation 0

10

20 30 Harmonic order

40

50

800÷31= 26

matching propagatio the Ar har cutoff ene spectrum magnitude measured significant the 0.8 !m field gene higher ene This photo predicted In co sources ba monic be pulse wid 1.4 !m. T #45% co HH spectr extension file is alm is attractiv the kiloele ergy scalin

was raised up to 26 mJ, a maximal output energy exceeding 7 mJ was achieved at the signal wavelength near 1.4 !m. Temporal characterization of amplified OPA pulses was performed using a single-shot autocorrelation !AC" technique. A typical AC trace is shown in the inset of Fig. 2. a Gaussian pulse shape, the pulse width of 1.4 !m nmAssuming pulse was evaluated to be 40 fs in full width at half maxi1 M. 6 Hentsc mum !FWHM", the energy of which corresponds to 10/23 No. the red T. Brabec, filled circles in Fig. 3. The solid red line depicts the Fourier-

ture !Lond

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

Plateau(プラトー)- remarkable feature of high-harmonic generation plateau cutoff

1015 W/cm2

Harmonic intensity (arb. unit)

Wahlström et al., Phys. Rev. A 48, 4709 (1993) 10

2

10

1

10

0

10

-1

10

-2

10

-3

10

-4

10

-5

10

-6

10

-7

10

-8

800 nm, 1.6×1014 W/cm2

plateau cutoff

Simulation 0

10

20 30 Harmonic order

40

50

プラトー(plateau):Efficiency does NOT decrease with increasing harmonic order. 次数が上がっても強度が落ちない。 カットオフ(cutoff):Maximum energy of harmonic photons e2 E02 2 2 14 Ec Ip + 3Up Up (eV) = = 9.3 10 I(W/cm ) (µm) 2 4m ponderomotive energy

• 摂動論的には解釈できない(non-perturbative) 10/23 No. 7

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

高次高調波発生のメカニズム Mechanism of HHG 摂動論的高調波 perturbative 電離 ionization

高次高調波(非摂動論的) HHG(non-perturbative) Laser field レーザー電場 recombination

virtual state 仮想準位

再結合→ 発光 photon emission (HHG)

ω ω € € €

ω €

3ω ground state 基底状態

electron 電子

トンネル 電離 tunneling ionization

電場中の古典 的運動

Semiclassical electron motion

3-step model Paul B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

10/23 No. 8

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

高次高調波発生の3ステップモデル 3-step model of HHG Paul B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

Ionization at

ωt0 = φ0

E0 [(cos φ − cos φ0 ) + (φ − φ0 ) sin φ0 ] z= ω2 Ekin = 2Up (sin φ − sin φ0 )2 Recombination at φ = φret (φ0 ) , which satisfies z = 0 Laser field E(t) = E0 cos ωt レーザー電場 recombination

Phase of recombination (phi_r)

350 300 250

再結合→ 発光 photon emission (HHG)

200 150 100

electron 電子

50 0 0

50

100

Phase of electron release (phi0)

150

トンネル 電離 tunneling ionization

電場中の古典 的運動

Semiclassical electron motion 10/23 No. 9

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

高次高調波発生の3ステップモデル 3-step model of HHG

Field (in E0)

1

field

0

recombination

ionization

-1

3

There is the maximum kinetic energy which is classically allowed. Ec = Ip + 3.17Up

1 0 0

90

180

long

short

short

2 long

Electron kinetic energy (in Up)

Simple explanation of the cutoff law カットオフ則のシンプルな説明

270

360

Phase (degrees)

There are two pairs of ionization and recombination times which contribute to the same harmonic energy.

Short and long trajectories 10/23 No. 10

Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo)

Even up to 1.6 keV, > 5000 orders almost x-ray!

Popmintchev et al., Science 336, 1287 (2012)

a  new  type  of  laser-‐‑‒based  radiation  source レーザーをベースにした新しいタイプの放射線源 10/23 No. 11

the retrieved pulse duration was 88 as. I ωL and I 2ωL ,)2;#0 , 4+;# #?-+/3)', 3' /"%## 03$#',3)', +'0 ()$1-/#0 )./+ /"# %+03+/3)' )* /"# ,/%)'&2650%3;#' +/)$3( 031)2#, -,3'& +of &#'#%+25 /+2 # Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. Tokyo) Both PROOF and FROG-CRAB assume that only 3@+/3)' )* /"# ?-+'/-$ /%#+/$#'/ )* %#*: 8A: !"#,# ,3$-2+/3)', 63#20 /"# ; ωL , and twice + BCD5+, 75%+6 1-2,# '#+% /"# 1%)1+&+/3)' +=3, 3' /"# *+% E#20 43/"3' #=1# + B5#F ,1#(/%+2 %+'&# '#+%streaking GD #F H*-22 23'# 3' I3&: JKL +(()$1+'3#0 .6 /"# ( photoelectrons emitted in a small angle in the lay between + *#4 ,$+22 ,+/#223/# 1-2,#,: !"# +11#+%+'(# )* ,+/#223/#, ,#1+%+/#0 .6 ,#() What happens if the fundamental laser !! MN *%)$ /"# (#'/%+2 1-2,# 2#+0, /) + ,1#(/%+2 $)0-2+/3)' 43/" + )* /" hotoelectron 1#%3)0 )* /43(# /"# 2+,#% 1")/)' #'#%&6L +, %#;#+2#0 .6 /"# (+2(-2+/#0 +$1 ,1#(/%-$ H*-22 23'#K 3' /"# 3',#/ )* I3&: J: !"# 0#1/" )* /"3, 3'& $)0-2+/3)' 1%);30#, + ,#',3/3;# $#+,-%# )* ,+/#223/# ()'/#'/: !"# +//), ormation of pulse is very short? では、超短パルスレーザ $#+,-%#0 ,1#(/%-$ )* /"# "+%$)'3( 75%+6 1-2,# %#O#(/#0 .6 )-% *#45