

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

GLSL Course chapter 5 - OpenGL

You can also query the link status and information log: We now need to activate the program by making it part of the current state, which can be done using:.

 Télécharger le PDF

 137KB taille
 14 téléchargements
 369 vues

 commentaire

 Report

OpenGL Shading Language Course Chapter 5 – Appendix

By Jacobo Rodriguez Villar

TyphoonLabs’ GLSL Course

1/1

APPENDIX INDEX Using GLSL Shaders Within OpenGL Applications Loading and Using Shaders Using Uniforms Using Textures Using Vertex Attributes How To Use the 3DSMax5 Mesh Exporter References

TyphoonLabs’ GLSL Course

2 2 4 6 7 9 10

2/2

Using GLSL Shaders Within OpenGL Applications Though we have covered creating GLSL shaders, they have not yet been used in any OpenGL-based application outside of Shader Designer. We now need to look at loading, compiling, linking, and using the shaders from within the OpenGL API (more information can be found at http://developer.3dlabs.com/openGL2/slapi/index.htm). Loading and Using Shaders For a GLSL shader to work, it is important that the following four extensions are supported by the graphics card: • • • •

GL_ARB_vertex_shader GL_ARB_fragment_shader GL_ARB_shader_objects GL_ARB_shading_language

This information can be found in one of two ways: • •

Checking for these tokens using the extensions string (glGetString(GL_EXTENSIONS);. Using an extension enumeration library like GLEW (http://glew.sourceforge.net), which is much easier and the method we'll use for our example(s).

If the card does support GLSL, you can attempt to load/use the shader in the following way: •

Create a placeholder for your shader using the glCreateShaderARB call:

GLhandleARB vertexShader = glCreateShaderObjectARB(Glenum shaderType);

shaderType must be either GL_VERTEX_SHADER_ARB for vertex shaders or GL_FRAGMENT_SHADER_ARB for fragment shaders. •

Load the source string into your shader using the glShaderSourceARB call: void glShaderSourceARB(GLhandleARB shader, GLsizei nstrings, const GLcharARB **strings, const GLint *lengths);

The shader will be initialized with a glCreateShaderARB call. nstrings holds the number of the strings contained within the shader (usually one); strings is a pointer to an array of strings; and lengths is an array which holds the length of the source strings. The shader is finally compiled with the function:

TyphoonLabs’ GLSL Course

3/3

void glCompileShaderARB(GLhandleARB shader)

For example, to use a vertex shader called “generic.vert” (the file extension is not important), you would initialize it using the following code: size_t ProgramSize(char *filename) { int shader; size_t size = -1; shader = _open(filename,_O_RDONLY); if(shader == ENOENT) size = -1; size = _lseek(shader, 0, SEEK_END); _close(shader); return size; } { FILE *source = fopen("generic.vert","rb"); size_t size = ProgramSize("generic.vert"); GLcharARB *programSource = (GLcharARB *)malloc(size*sizeof(GLcharARB)); fread(m_programSource,m_size,1,source); fclose(source); GLhandleARB vertexShader = glCreateShaderObjectARB(Glenum shaderType); glShaderSourceARB(vertexShader, 1,(const GLcharARB **)&programSource,NULL); free(programSource); glCompileShaderARB(vertexShader); }

The shader is now compiled and ready to be attached to a program object (the executable unit that is a placeholder for compiled shaders). However, you may want to know the compilation result, as well as warning/error messages (if any). int compiled = 0, length = 0, laux = 0; glGetObjectParameterivARB(shader, GL_OBJECT_COMPILE_STATUS_ARB, &compiled); glGetObjectParameterivARB(shader, GL_OBJECT_INFO_LOG_LENGTH_ARB, &length); GLcharARB *logString = (GLcharARB *)malloc(length * sizeof(GLcharARB)); glGetInfoLogARB(shader, length, &laux, logString);

If the compiled variable returns false the shader will not compile due to errors (ill-formed data, resource issues, etc.). You may gain more information by retrieving the compilation log, but you must first find its length in order to allocate enough space for it. We can now define an executable unit by creating and compiling the program object. This process involves linking global variables, varyings, etc.

TyphoonLabs’ GLSL Course

4/4

A program object (able to contain shaders of both types), which is both linkable and executable, can be created using the following function: GLhandleARB glCreateProgramObjectARB(void)

Once created and compiled, the vertex and fragment shaders must be ‘inserted' into the program object (they can be inserted into multiple program objects). This can be achieved using the glAttachObjectARB call: void glAttachObjectARB(GLhandleARB program, GLhandleARB shader)

GLhandleARB vertex = MyFuncThatLoadShaders(“vertex.vert”); GLhandleARB fragment = MyFuncThatLoadShaders(“fragm.frag”); GLhandleARB program = glCreateProgramObjectARB(); glAttachObjectARB(program,vertex); glAttachObjectARB(program,fragment);

When the shaders are attached, you can link your program and leave it ready to be used: void glLinkProgramARB(GLhandleARB program)

You can also query the link status and information log: glLinkProgramARB(program); glGetObjectParameterivARB(m_program,GL_OBJECT_LINK_STATUS_ARB,&resul); glGetObjectParameterivARB(m_program,GL_OBJECT_INFO_LOG_LENGTH_ARB,&length); glGetInfoLogARB(program,length,&laux,infoLog);

We now need to activate the program by making it part of the current state, which can be done using: glUseProgramObjectARB(program); // Render some stuff, with glVertex, glDrawElements... glUseProgramObjectARB(0); //back to fixed function pipeline

The shaders themselves and programs can be deleted using: void glDeleteObjectARB(GLhandleARB object)

If an object attached to another object is deleted, it will only be flagged for deletion and not actually deleted until it's no longer attached. This means we must detach all objects before any real deletion can occur: void glDetachObjectARB(GLhandleARB container, GLhandleARB attached)

Using Uniforms Passing variables from an OpenGL application to a GLSL object is done using glUniform calls, but it is important that the program object is linked first. If it is not linked, the calls will have no effect, as linking operations always initialize all uniforms at 0. TyphoonLabs’ GLSL Course

5/5

In addition to this, glUniform calls do not use strings for variable names, but instead use integers, which can be obtained using: GLint glGetUniformLocationARB(GLhandleARB program, const GLcharARB *name) int location = glGetUniformLocationARB(program,”bumpSize”); glUniform1fARB(location, mybumpSizeVariable);

There are many glUniform calls: • • •

glUniform{1|2|3|4}{f|i}ARB is used to pass single values. glUniform{1|2|3|4}{f|i}vARB is used to pass an array of values. glUniformMatrix{2|3|4}fvARB is used to pass mat2, mat3, mat4, or arrays of them.

A complete description of these calls can be found at: http://developer.3dlabs.com/openGL2/slapi/UniformARB.htm

TyphoonLabs’ GLSL Course

6/6

Using Textures Using textures involves passing both the texture unit (not the texture object) number to the shader and the correct binding of the texture to that unit. We can pass the texture unit number by using the glUniform1i(location,texture_unit); call, but if you want use this as a sampler within the fragment (or vertex) shader, you must use the [1i] variant of the glUniform or else an error will occur. You can find out the maximum number of textures a program object can support by querying the GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB define with glGetInteger (which, once known, can simply activate each texture unit and bind the texture to it) (glEnable is not required here): for(int I= 0;I< my number of textures;I++) { glActiveTextureARB(GL_TEXTURE0_ARB + I); glBindTextureARB(GL_TEXTURE_2D,my_texture_array[I]); // glEnable(GL_TEXTURE_2D);

this is not needed, don’t do it

int location = glGetUniformLocationARB(myProgramObject, mySamplerNameArray[I]); glUniform1iARB(location, I); } glActiveTextureARB(GL_TEXTURE0_ARB); // back to texture unit 0

TyphoonLabs’ GLSL Course

7/7

Using Vertex Attributes Every time the glNormal, glTexCoord, and glColor functions are called, you send pre-defined vertex attributes to the vertex shader. Vertex arrays (like glTexCoordPointer and glNormalPointer) can be used as well. We will now look at some generic attributes which work in much the same way, but are more flexible, as you can assign descriptive names or complex types (like mat4 instead of normal vec types). Vertex attributes must be bound to a free ‘slot,’ which can be obtained via the OpenGL API, but this the program must be linked or else it will not work (as it is the link operation that decides which slots are free/not free): GLint glGetAttribLocationARB(GLhandleARB program, const GLcharARB *name)

For example: int location = glGetAttribLocationARB(myProgram,”tangent”);

This method will always retrieve a free slot, unless they are all occupied (we can force slots with the glBindAttribLocationARB function, but it's better to ask OpenGL for a free one). Once a slot has been established, we can then send the attributes to OpenGL just like standard attributes and vertices. There are two ways to do this: immediate mode and vertex arrays. Immediate mode: Using glVertexAttrib*ARB between a glBegin/glEnd pairing, like glNormal or glTexCoord : int location = glGetAttribLocationARB(myProgram,”myattrib”); glBegin(GL_TRIANGLES); glVertexAttrib3fARB(location,0,1,0); glVertex3f(0,0,0); glVertexAttrib3fARB(location,1,0,0); glVertex3f(0,0,0); glVertexAttrib3fARB(location,0,1,1); glVertex3f(0,0,0); glEnd();

TyphoonLabs’ GLSL Course

8/8

Vertex arrays: To use a vertex array, you must first enable it for both the server and client states: glActiveTextureARB(GL_TEXTURE5_ARB); glClientActiveTextureARB(GL_TEXTURE5_ARB); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glVertexPointer(3,GL_FLOAT,0,geometry); glNormalPointer(GL_FLOAT,0,normals); //draw stuff glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glActiveTextureARB(GL_TEXTURE0_ARB); glClientActiveTextureARB(GL_TEXTURE0_ARB);

To use generic vertex attribute arrays, a location is needed, which allows you to setup your arrays easily: glActiveTextureARB(GL_TEXTURE5_ARB); glClientActiveTextureARB(GL_TEXTURE5_ARB); int location = glGetAttribLocationARB(myProgram,”myattrib”); glEnableVertexAttribArrayARB(location); glVertexAttribPointerARB(location,size,type,false,0,myarray); //draw some stuff glDisableVertexAttribArrayARB(location); glActiveTextureARB(GL_TEXTURE0_ARB); glClientActiveTextureARB(GL_TEXTURE0_ARB);

Though this example may not be very good (as it assumes vertex attributes only, without vertices, so no drawing is actually performed), the objective is to show how to correctly setup a generic vertex attribute array. The most complex function in this example is glVertexAttribPointerARB, which works the same as glNormalPointer but is generic. A complete description of this function can be found at: http://developer.3dlabs.com/openGL2/slapi/VertexAttribPointerARB.htm

TyphoonLabs’ GLSL Course

9/9

How to Use the 3DSMax Mesh Exporter Though Shader Designer has a series of default meshes, you may wish to import your own geometry. This can be done using the Flexporter (http://www.codercorner.com/Flexporter.htm) a plug-in manager for 3DSMax5, with the Shader Designer’s export plugin. This export plugin allows you to export an entire scene (without animations) to a GSD (Shader Designer mesh format) file. However, there are a couple of items to take into consideration before exporting any data: •

The default view frustum in Shader Designer is znear=1, zfar=500, fov=45, while the camera position is at (0,0,3) pointing at (0,0,0). If your mesh is too large and not centered correctly at (0,0,0), you may not see anything. If this is the case, reduce the mesh until it fits within a bounding box of 3 units, then place it (the scene) at the origin.

•

Remember to perform a resetXform on every submesh/object of your scene before exporting it.

TyphoonLabs’ GLSL Course

10/10

References: Shader Designer homepage: http://www.TyphoonLabs.com OpenGL Shading Language API man pages, GLSL examples and resources: http://developer.3dlabs.com GameInstitute homepage: http://www.clockworkcoders.com/oglsl/tutorials.html GLSL Shaders: http://3dshaders.com GLSL Tutorials: http://www.clockworkcoders.com

TyphoonLabs’ GLSL Course

11/11

des documents recommandant

[image: alt]

GLSL Course chapter 3 - OpenGL

We are computing the vertex position, but most important in this example, we are Note: Because this is a basic example, we are not concerned about surface ...Missing:

[image: alt]

GLSL Course chapter 4

true fragment position by computing the exact vectors from light or camera to obtained with the cross product of the normal and the tangent vector, and is.

[image: alt]

OpenGL Shading Language Course Chapter 2 â€“ GLSL Basics By

number is 16). Graphics cards usually have more texture images than texture units. mat2(vec2, vec2); genType cos (genType angle). genType tan (genType ...

[image: alt]

Chapter 5

ployment index is based on the Office of Business Economics series for â€œper. 1. I refer here to Corresponding changes at intermediate levels are established by propor ... The reader was promised the opportunity to adjust my results if he pre.

[image: alt]

chapter 5

5.2 the container A is filled with sand to a depth zl and water to a depth z2 above the sand surface. The soil properties as obtained from soil exploration.

[image: alt]

Chapter 5

wages and protected by the Labour Protection Law. They are also covered by many forms of social security programs. In 1994, more than half of the employed ...

[image: alt]

Chapter 5 - Estrella AG

Poids spécifique. Température de ramollissement. Conductibilité calorifique. Coefficient de dilatation linéaire. (20 à 400°C). Capacité thermique massique.

[image: alt]

Chapter 5 - Estrella AG

315. 360. 420. Austauschfläche (m2) für I maxi. Exchange area (m2) for I maxi. Surface d'échange(m2) pour I maxi. 0.782. 1.00. 1.24. 1.48. 1.93. 2.40. 2.85. 3.12 ...

[image: alt]

course 5 - OGS AthlÃ©tisme

Oct 27, 2012 - ESM. 1. OLYMPIQUE GRANDE-SYNTHE ATHL. BRAZY MATTHIEU 101. 371. 00:24:46.9. SEF. 10. JLSAT. PODEVIN REBECCA. 102. 117.

[image: alt]

chapter 5 - Description

the moment equation (Eq. (i)) if the support points A and B were on different Equation (5.14) is a quadratic equation in H and may be solved for a specific ...

[image: alt]

Chapter 5 Product differentiation

Feb 3, 2009 - Does the market outcome provide appropriate product diversity? â€¢ Product simultaneously the unique Nash equilibrium is such that they both ...

[image: alt]

Chapter 5 - Estrella AG

Acier vitrifiÃ©. Specifications produit voir feuille. â€ž5-000â€œ. GrÃ¶ssere Nennweiten siehe Rubrik. â€žKolonnen 3-xxxâ€œ. Larger diameters see item. â€žColumns 3-xxxâ€œ.

[image: alt]

Chapter 5: Exploratory Data Analysis

v = var(forearm);. % Obtain normal pdf based on parameter estimates. axis([-0.5 max(k)+1 min(phik)-1 max(phik)+1]) the median. Conversely, if it is large, then the middle 50% of the data are Another version shades the leaves.

[image: alt]

Chapter 5 - Contracts and Claims

The discussion on interpretation of contracts presents common interpretation practices and is The theory of implied warranty can be used to resolve disputes.

[image: alt]

Chapter 5 SURFACING - Workspace - trueSpace

(e.g. C:\Program Files\Adobe\Photoshop\Photoshop.exe). If Link Editor to edit the actual material on the object and not a version of it that's "held" in You can also finalize the mesh by using the Flatten History tool but be aware that d

[image: alt]

Chapter 5: Image Graphics .fr

strong contrast edges in the image; a natural trait of the JPEG compression ... while the compressed version in Figure 5.3 only takes 65K Bytes in a file. The.

[image: alt]

quizlet chapter 5 microbiology pdf

Ebook PDF quizlet chapter 5 microbiology Download or Read Online quizlet chapter 5 microbiology Ebook PDF file for free from our online article. Ebook PDF ...

[image: alt]

Chapter 5 Engine electrical systems

the other side to the contact breaker plate. Depression in the inlet manifold and Always refer to the manufacturer's recommendations (often printed on a label.

[image: alt]

Contents Chapter 5: Flow Valves

Catalogue HY11-3500/UK PCCMS. Manatrol 2 way flow control valves for pressure compen- ... at minimum and maximum settings. Sizes 400, 600 and 1200.

[image: alt]

health chapter 5 review answers pdf

Dense Humide Dans Les Ghats Occidentaux De Iinde, and many other ebooks. We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers w

[image: alt]

Chapter 5, lesson 1 - English is cool

Dear readers,. I am in Winchester Avenue, at number 54. That's right. It's the place where Jonathan Reed killed his family with an axe because a little voice told ...

[image: alt]

Chapter 9, lesson 5 - English is cool

Day 1 : I can't believe they attacked us! I can't believe the aliens attacked us! In the last ten years, they were nothing but friendly and yet, that didn't stop them ...

[image: alt]

Chapter 5 - Design Philosophies for Highway Bridges

or the allowable stress design method, both of which are available in the Standard Specifications, ... crushing of concrete, loss of stability, by a safety factor.

[image: alt]

Chapter 6, lesson 5 - English is cool

Last night, a full moon was shining in the sky. It was a quiet and beautiful night, but it was freezing. I was walking my dog Benjy after dinner when I heard a ...

×
Report GLSL Course chapter 5 - OpenGL

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

