Fusion and Inversion of SAR Data to Obtain a Superresolution Image

250. Quad. Reg. Proposed MAP. ' &. $. %. Multistatic data fusion methods. Method 1: Data Fusion followed by inversion. G1(u, v). M1(u, v). −. |. G2(u, v). M2(u, v).
3MB taille 1 téléchargements 197 vues
Fusion and Inversion of SAR Data to Obtain a Superresolution Image 1

2

3

Ali MOHAMMAD-DJAFARI , Franck DAOUT and Philippe FARGETTE 1

` Laboratoire de signaux et systemes (L2S), UMR 8506 CNRS-SUPELEC-Univ Paris Sud 11, Gif-sur-Yvette, France 2 SATIE, ENS Cachan, Universite´ Paris 10, France 3 DEMR, ONERA, Palaiseau, France $

'

Absract The Synthetic Aperture Radar (SAR) data obtained from a single emitter and a single receiver gives information in the Fourier domain of the scene over a line segment whose width is related to the bandwidth of the emitted signal. The mathematical problem of image reconstruction in SAR then becomes a Fourier Synthesis (FS) inverse problem. When there are more than one emitter and/or receiver looking the same scene, the problem becomes fusion and inversion. In this paper we report on a Bayesian inversion framework to obtain a Super Resolution (SR) image doing jointly data fusion and inversion. We applied the proposed method on some synthetic data to compare its performances to other classical methods and on experimental data obtained at ONERA.

&

' $

'

Synthetic Aperture Radar (SAR) Proposed Bayesian Approach imaging

$ '

Z



s(t, u) = f (x, y) p(t − τ (x, y, u)) dx dy     k cos(θ) kx = |k| = k = ω/c k= k sin(θ) ky s(ω, u) = =

Z



Z

G1(u, v ) − M1(u, v ) Joint Fusion | → and f (x, y) →b Inversion G2(u, v ) − M2(u, v )  g 1 = H1 f + ǫ 1 g 2 = H2 f + ǫ 2 p(f |g 1, g 2) ∝ p(g 1|f ) p(g 2|f ) p(f ) MAP : fb = arg max {p(f |g 1, g 2)} = arg min {J(f )}

Generalized Gaussian:h P i p(f ) ∝ exp γ j |fj |2

Cauchy: h P i p(f ) ∝ exp γ j ln(1 − |fj |2 Generalized Gauss-Markov   X p(f ) ∝ exp γ |fj − fj−1|β 



& '

f (x, y) exp [−j(kx x + ky y)] dx dy

Gauss-Markov-Potts

Comparison with classical methods fh(x,y)

f

f

j

f (x, y) exp [−jωτ (x, y, θ(u))] dx dy

with % $

J(f ) = − ln p(g 1|f ) − ln p(g 2|f ) − ln p(f ) X kg 1 − H1f k2 kg 2 − H2f k2 β ] | = + + γ [Df j 2 2 2σǫ1 2σǫ2 j

fh(x,y)

0

0

50

50

100

100

150

150

200

200

250

250

& '

% $

Simulated data fh(x,y)

0

50

100

150

200

250

0

50

100

150

200

fh(x,y)

fh(x,y)

0

0

50

50

100

100

150

150

200

200

0

50

50

100

100

150

150

200

200

S(u,v) −70

−70 −65

250

250 0

50

100

150

200

250

0

50

100

150

200

250

−60

Data Fusion followed Joint Fusion by Inversion and Inversion

−60 −50 −55 −40

−50

v (rad/m)

250

v (rad/m)

fh(x,y)

0

250

Gerchberg-Papoulis Least Squares S(u,v)

$

Bayesian Simultaneous Data Fusion and Inversion

fb = arg min {J(f ) = − ln p(g|f ) − ln p(f )} f   1 2 kg − Hf k p(g|f ) ∝ exp 2σǫ2 ◮

%

−45

−10

0

25

30

35 40 u (rad/m)

45

50

200

250

0

50

100

150

200

250

55

Proposed MAP

Multistatic data fusion methods

10 20

150

& '

−30

15

100

Quad. Reg.

−20 −35

−20

50

−30

−40

−25

250 0

10

15

20

25

30 35 u (rad/m)

40

45

50

55

& '

% $

% $

Experimental data (Vv polarisation)

Bistatic & Multistatic  Monostatic  Method 1: kx = k cos(θ) kx = k (cos(θtc ) + cos(θcr ) Data Fusion followed by inversion ky = k sin(θ) ky = k (sin(θtc ) + sin(θcr )

& '

Bayesian Estimation Approach Forward model M : g = Hf + ǫ ◮ Likelihood: p(g|f ; M) = pǫ(g − Hf ) ◮ A priori information: p(f |M) ◮ Bayes : p(g|f ; M) p(f |M) p(f |g; M) = p(g|M) ◮ Estimators: ◮

Mode (Maximum A Posteriori) ◮ Mean (Posterior Mean) ◮ Marginal modes

% $

G2(u, v) f2(x, y) − Inversion − b M2(u, v) ◮

Coherent addition b f (x, y) = (b f1(x, y) + b f2(x, y))/2 ◮ Incoherent addition b f1(x, y)| + |b f2(x, y)|)/2 f (x, y) = (|b ◮



&

Image fusion

& %

−0.2

0

y (m)

−0.2

y (m)

−0.2

0

0.2

0.2

0.4

0.4

0.4

0.6 −0.4

−0.2

0 x (m)

0.2

0.4

0.6

0.6 −0.6

−0.4

−0.2

0 x (m)

0.2

0.4

0.6

−0.6

−0.4

−0.4

−0.4

−0.2

−0.2

−0.2

0

y (m)

−0.6

0

0.2

0.2

0.4

0.4

0.4

0.6

0.6 −0.2

0 x (m)

0.2

0.4

0.6

−0.4

−0.2

0 x (m)

0.2

0.4

0.6

−0.6

−0.4

−0.4

−0.4

−0.2

−0.2

−0.2

0

0.2

0.2

0.4

0.4

0.4

0.6 −0.2

0 x (m)

0.2

0.4

0.6

0.6

−0.2

0 x (m)

0.2

0.4

0.6

0.2

0.4

0.6

0

0.2

−0.4

0.4

fh(x,y) −0.6

−0.6

−0.4

fh(x,y) −0.6

0.6

0.2

0.6 −0.6

−0.6

0

0 x (m)

0

0.2

−0.4

−0.2

fh(x,y)

−0.6

−0.6

−0.4

fh(x,y)

−0.6

fh(x,y)

BF1 & BF2

0

0.2

fh(x,y)

Method 2: Separte inversion followed by image fusion

|→ Fusion →b f (x, y)

−0.4

−0.6

BF2 band

G1(u, v) − Inversion − b f1(x, y) M1(u, v)

−0.4

y (m)

g = Hf + ǫ

−0.4

0.6

and M(kx , ky ) = M1(u, v) ∪ M2(u, v)

Reconstruction by backpropagation −0.6

y (m)

G(kx , ky ), M(kx , ky ) → f (x, y) Z g(ui , vi ) = f (x, y) exp [−j(ui x + vi y)] dxdy

BF1 band

Reconstruction by backpropagation −0.6

y (m)

Inverse problem:

Reconstruction by backpropagation −0.6

y (m)

f (x, y) → G(kx , ky ), M(kx , ky )

G1(u, v) − M1(u, v) G(kx , ky ) |→ f (x, y) → Inversion → b M(u, v) G2(u, v) − M2(u, v)  with 2 (u,v )   G1(u,v )+G (u, v) ∈ M1(u, v) ∩ G2(u, v) 2 G(u, v) = G1(u, v) (u, v) ∈ M1(u, v)   G2(u, v) (u, v) ∈ M2(u, v)

y (m)

Forward model: Fourier Synthesis

% $

y (m)

& '

0.6 −0.6

−0.4

−0.2

0 x (m)

0.2

0.4

0.6

−0.6

−0.4

−0.2

0 x (m)

& '

References A. Mohammad-Djafari, F. Daout & Ph. Fargette, Fusion et inversion des signaux SAR pour obtenir une image ´ super resolue, GRETSI 2009, 7-10 Sept., Dijon, France. A. Mohammad-Djafari, Sh. Zhu, F. Daout & Ph. Fargette, Fusion of Multistatic Synthetic Aperture Radar Data to obtain a Superresolution Image, WIO 2009, 2024 July, Paris, France.

% &

% $

%