Fermions in cold atom gases - Guillaume Roux

er Unit Length [ 1/mm ]. 1.0. 0.5. 0.0. Position [ mm ]. 8.9 mW. 4.5 mW. 3.3 mW. 2.7 mW. 2.4 mW. 0.9 mW. Greiner, Regal, Jin Nature 426, 537 (2003), Zwierlein et ...
642KB taille 4 téléchargements 269 vues
Fermions in cold atom gases

Magnetic Feshbach resonance & scattering length M. Greiner et al. arXiv:cond-mat/0502539

Fabian Heidrich-Meisner Institut fur ¨ Theoretische Physik C, RWTH Aachen

RWTH Aachen – Jan 17 & Jan 18 (2008)

1

Fermions in cold atom gases 1. General remarks (a) Quantum degeneracy, hyperfine states 2. The BEC-BCS crossover (a) (b) (c) (d)

Feshbach resonance: molecular bound state BEC condensate of composite bosons BCS theory Models for the BEC-BCS crossover

3. Pairing in spin-imbalanced Fermi gases (a) Fulde-Ferrel-Larkin-Ovchinikov states Giorgini, Pitaevskii, Stringari, Theory of ultracold atomic Fermi gases, to appear in RMP, arxiv:0706.3360

RWTH Aachen – Jan 17 &Jan 18 (2008)

1

Quantum degenerate Fermi gases

Kinetic energy vs temperature DeMarco, Jin, Science 285, 1703 (1999); O’Hara et al., Science 298, 2179 (2002)

RWTH Aachen – Jan 17 &Jan 18 (2008)

2

Feshbach resonance: Open and closed channel

Energy

ε

Closed Channel

Open Channel

Internuclear Separation

Plot taken from: Holland et al PRL 86, 1915 (2001)

RWTH Aachen – Jan 17 &Jan 18 (2008)

3

Molecules in the repulsive regime of a Fermi gas

a [nm]

200 100

2

04 -100 -200 0

3

0.5

1

1

1.5

Magnetic Field [kG]

2

: two (!) resonances (at 834 G and 543 G)

Li atoms: Cubizolles et al. PRL 91, 240401 (2003)

RWTH Aachen – Jan 17 &Jan 18 (2008)

4

Molecules in the repulsive regime of a Fermi gas

Potassium atoms: Regal et al Nature 424, 47(2003)

RWTH Aachen – Jan 17 &Jan 18 (2008)

5

Spin changing radio-frequency transitions

Plots taken from Greiner et al. PRL 92, 140404 (2004)

RWTH Aachen – Jan 17 &Jan 18 (2008)

6

BEC-BCS crossover

Greiner et al. arXiv:cond-mat/0502539

RWTH Aachen – Jan 17 &Jan 18 (2008)

7

Molecule Number Per Unit Length [ 1/mm ]

Observation of BEC of molecules formed of fermions

0.9 mW

2.4 mW

2.7 mW

3.3 mW

4.5 mW 6

1x10

8.9 mW

0 0.0

0.5

1.0

Position [ mm ]

Greiner, Regal, Jin Nature 426, 537 (2003), Zwierlein et al. PRL 92, 250401 (2003) Jochim et al Science 302, (2003)

RWTH Aachen – Jan 17 &Jan 18 (2008)

8

Evidence for Cooper pairs in the BCS regime

Regal et al. PRL 92, 040403 (2004)

RWTH Aachen – Jan 17 &Jan 18 (2008)

9

Condensation of Fermionic atom pairs near the resonance & in the strongly interacting regime 204

B (gauss)

N0 / N

0.15 0.10

202 200 198 -9 -6 -3 0 3 16 18 t (ms)

0.05 0 -0.5

0

0.5

1.0

DB (gauss) Regal et al. PRL 92, 040403 (2004)

RWTH Aachen – Jan 17 &Jan 18 (2008)

10

Condensation of Fermionic atom pairs near the resonance & in the strongly interacting regime

Zwierlein et al. PRL 92, 120403 (2004)

RWTH Aachen – Jan 17 &Jan 18 (2008)

11

Collapse of quantum degenerate Fermi gases

Front: fermions (potassium); back: bosons (rubidium) Mudugno et al Science 297, 2240 (2002)

RWTH Aachen – Jan 17 &Jan 18 (2008)

12

BEC-BCS crossover

Greiner et al. arXiv:cond-mat/0502539

RWTH Aachen – Jan 17 &Jan 18 (2008)

13

Phase-diagram of the BEC-BCS crossover

Plot taken from: Ketterle, Zwierlein, arxiv.org/0801.2500

RWTH Aachen – Jan 17 &Jan 18 (2008)

14

Summary: Experiments 1. Realization of Quantum Degeneracy in Fermi gases 2. Interactions tuned by magnetic Feshbach resonances: Molecular bound state on the repulsive side (a > 0, BEC regime) 3. BEC-BCS crossover: from tightly bound molecules to pairs formed in momentum state; condensation of composite bosons changes/ influence of quantum statistics 4. Condensates in the BEC limit observed 5. Condensation in the crossover regime observed nature of condensed objects under debate 6. Theory: model with fermion-boson conversion 7. Collapse of Fermi gases, Fermion-boson mixtures

RWTH Aachen – Jan 17 &Jan 18 (2008)

15

Theoretical model for the crossover need to model conversion between molecules (bk) and atoms (ak)

H

= 2ν

X

b†kbk

+

X

k

k a†k↑

ak↑ +

 † ak↓ak↓

k

a†k1↑ a†k2↓ak3↓ak4↑

X

+ Ubg

k1 ...k3

+g

X

b†q a q +k↑ a q −k↓ + bq a†q −k↓a†q +k↑

k,q

2

2

2

2

Particle number N conserved: N =

X k

a†k↑

ak↑ +

 † ak↓ak↓

+2

X

b†kbk

k

Two-channel model (or Bose-Fermi model): for narrow Fashbach resonances Timmermans et al. Phys. Lett. A 285, 228 (2001); Holland et al. Phys. Rev. Lett. 87, 120406 (2001) Compare: Sheehy & Radzihovsky Ann. of Physics 332, 1790 (2007)

RWTH Aachen – Jan 17 &Jan 18 (2008)

16

BCS: Gap and chemical potential

Plot taken from Ketterle, Zwierlein, arxiv.org/0801.2500

RWTH Aachen – Jan 17 &Jan 18 (2008)

17

BCS: Spatial extenion of Cooper pairs

Plot taken from Ketterle, Zwierlein, arxiv.org/0801.2500

RWTH Aachen – Jan 17 &Jan 18 (2008)

18

MDF: One-channel model vs QMC

Red: BCS; solid lines: QMC

RWTH Aachen – Jan 17 &Jan 18 (2008)

Plot taken from Giorgini et al, arxiv.org/0706.3360

19

Condensate fraction: One-channel model vs QMC

Green: BCS; Symbols: QMC Plot taken from Giorgini et al, arxiv.org/0706.3360

RWTH Aachen – Jan 17 &Jan 18 (2008)

20

Transition temperature

From BCS theory; Plot taken from: Giorgini et al, arxiv.0706.3360

RWTH Aachen – Jan 17 &Jan 18 (2008)

21

Theoretical model for the crossover need to model conversion between molecules (bk) and atoms (ak)

H

= 2ν

X

b†kbk

+

X

k

k a†k↑

ak↑ +

 † ak↓ak↓

k

a†k1↑ a†k2↓ak3↓ak4↑

X

+ Ubg

k1 ...k3

+g

X

b†q a q +k↑ a q −k↓ + bq a†q −k↓a†q +k↑

k,q

2

2

2

2

Particle number N conserved: N =

X k

a†k↑

ak↑ +

 † ak↓ak↓

+2

X

b†kbk

k

Two-channel model (or Bose-Fermi model): for narrow Fashbach resonances Timmermans et al. Phys. Lett. A 285, 228 (2001); Holland et al. Phys. Rev. Lett. 87, 120406 (2001) Compare: Sheehy & Radzihovsky Ann. of Physics 332, 1790 (2007)

RWTH Aachen – Jan 17 &Jan 18 (2008)

22

Chemical potential from the two-channel model 1

0.9

µ/E

F

0.8

0.7

0.6

0.5 0

0.1

0.2

0.3

T/TF

0.4

0.5

0.6

0.7

Holland et al. PRL 87, 120406 (2001)

RWTH Aachen – Jan 17 &Jan 18 (2008)

23

Two-channel model: Molecular field and gap 0.025

∆ / EF

0.6 0.4 0.2

0.015

0 0

m

2|φ |2 / N

0.02

0.2

0.01

0.4 T/TF

0.6

0.005

0 0

0.1

0.2

0.3

T/TF

0.4

0.5

0.6

0.7

Holland et al. PRL 87, 120406 (2001)

RWTH Aachen – Jan 17 &Jan 18 (2008)

24