Emissive Displays – Organic Electroluminescence

Load Lock. Materials Growth Laboratory. III-V MBE. Load Lock. Transfer .... 5.7eV. Alq. 3. 2.7 eV electrons exciton trap states low work function cathode.
3MB taille 3 téléchargements 40 vues
Lecture 7 6.976 Flat Panel Display Devices

Emissive Displays – Organic Electroluminescence Flexible OLED

• • • •

types of organic materials growth of organic materials organic light emitting devices OLED-based displays

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 1

Organic Materials Attractive due to: • Integrability with inorganic semiconductors • Low cost (fabric dyes, biologically derived materials) • Large area bulk processing possible • Tailor molecules for specific electronic or optical properties • Unusual properties not easily attainable with conventional materials

MOLECULAR MATERIALS

Alq3 POLYMERS

n

6.976 Flat Panel Display Devices – Spring 2001

But problems exist: • Stability • Patterning • Thickness control of polymers • Low carrier mobility

PPV

Lecture 7

Slide 2

Scientific Interest in Organic Materials • 1828 - Wöhler first synthesized urea without the assistance of a living organism • 1950’s - steady work on crystalline organics starts • 1970’s - organic photoconductors (xerography) • 1980’s - organic non-linear optical materials • 1987 - Kodak group published the first efficient organic light emitting device (OLED) • Since then, the field has dramatically expanded both commercially and scientifically (OLEDs, transistors, solar cells, lasers, modulators, ... )

to date, about two million organic compounds have been made - this constitutes nearly 90% of all known materials 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 3

Device Preparation and Growth substrate holder thickness monitor

• Glass substrates precoated with ITO - 94% transparent - 15 Ω/square • Precleaning Tergitol, TCE Acetone, 2-Propanol • Growth - 5 x 10-7 Torr - Room T

substrate

shutter

TURBO PUMP COLD TRAP

ROUGHING PUMP

source boats

VACUUM CHAMBER

- 20 to 2000 Å layer thickness POWER SUPPLIES 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

GND Slide 4

Materials Growth Laboratory Base Pressure 10-9 ~ 10-11 torr

OMBD II

Sputtering

OMBD I

Metal e-Beam

III-V MBE

Princeton University

Analysis Chamber 6.976 Flat Panel Display Devices – Spring 2001

Load Lock

Lecture 7

Transfer Chamber

Load Lock

Slide 5

Integrated Materials Growth System

Evaporative Deposition • molecular organics (amorphous and crystalline)

• metals Shadow Mask Storage

Probe Station with Cryostat AFM STM

Ante Chamber and Oven Wet N2 Glove Box

Sputtering • ITO • ceramics

Dry N2 Glove Box

Load Lock with Sample Storage Physical & Vapor Phase Dep. • • • •

Laminar Flow Hood

molecular organics nano-dots ** solvated polymers ** colloids **

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 6

Other Growth Methods • Spin-on • Langmuir-Blodgett • Inkjet Printing • Dye Diffusion • Silkscreen

glass substrate

DIFFUSION highly doped polymer film } SOURCE SHADOW MASK doped polymer film ITO glass substrate

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

}

DEVICE

Slide 7

Development of Organic LEDs • Conventional, Transparent, Inverted, Metal-Free, Flexible, Stacked ~ OLED, TOLED, OILED, MF-TOLED, FOLED, SOLED ~

• Displays

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 8

Personal Organizer, Notebook Rugged, high resolution, full-color, video-rate displays

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 9

Automotive

Dashboard displays, external indicator lights, and road signs

Multi-Function Video Watch

Rugged, high resolution, full-color, video-rate displays enable a multitude of applications 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 10

Active Wallpaper Large area displays

Active Clothing

Light, rugged, low voltage, flexible displays

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 11

Why do OLEDs Glow ?

Alq3

PL

OLED

V

Ag Mg:Ag

+

~1000 Å ~500 Å ~500 Å

Alq3 TPD

electrons and holes form excitons (bound e--h+ pairs)

ITO

E

HTL

Alq3

TPD N

Al

6.976 Flat Panel Display Devices – Spring 2001

N O

+ 3

400 500 600 700 800

Wavelength [nm]

recombination region

Glass

N

EL

_

LUMO

ETL HOMO

some excitons radiate Lecture 7

Slide 12

Electroluminescence CARRIER INJECTION

Ca

PPV

Single Layer Device

EXCITON RECOMBINATION

hν ν ITO

CARRIER TRANSPORT

Heterostructure Device Al

CN-PPV 2.1 eV

2.4 eV PPV

hν ν

6.976 Flat Panel Display Devices – Spring 2001

ITO

Lecture 7

Slide 13

Exciton Recombination Zone

C. Adachi, et al. 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 14

Trap Limited Conduction in Organic Materials charge trapping can dominate conduction

_

´ McCarty, Thompson, Forrest, Shen, Burrows, Bulovic, Jpn. J. Appl. Phys. 35, L401 (1996).

_

free molecule molecule distorts

_

Þ∆E

LUMO ∆E

E trap level

molecule distorts

10-3 15

m

10-4

Current [A]

10-5

HOMO

10

Tt = 1780 K

10-6

5

4

6

8

1/T [10-3/K]

-7

10

10-8 T=141K T=180K T=240K T=295K

10-9 10-10 10-11 1

Voltage [V]

6.976 Flat Panel Display Devices – Spring 2001

10 Lecture 7

m -2m-1 m+1 V J ∝ NLUMO µnNt d m = Tt/T

Nt=3.1x1018cm-3, µnNLUMO=4.8x1014/cm-V-s Slide 15

Progress in LED Efficiency

OLEDs PLEDs ol M

ec

S ar l u

id ol

s

after Sheats et al., Science 273, 884 (1996).

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 16

Why Make Organic LEDs WE DEMONSTRATED OLEDs THAT ARE :

• Bright - 100,000 cd/m2 (30,000 ft-L) • Efficient - >30 lm/W • Scalable Emissive Area - from a few µm to a few cm in size • Colors - fluorescent R,G,B and phosphorescent R,G • Low Voltage - 3 to 10 V • Low Cost Materials • Low Cost Substrates • Wide Viewing Angle - >160 deg • Reliability - 1,000,000 hrs (phosphorescent R half-life)

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 17

OLED Stability

Relative luminance [L/L0]

1.0 0.9

MQA/Alq QA/Alq

0.8 0.7

Alq 0.6 0.5

1

5 10

50 100

1000

10000

Hours of operation

Alq3 devices driven at 20 mA/cm2 Initial luminance for Alq3 is 510 cd/m2 for QA doped Alq3 devices is 1600 cd/m2 and for MQA doped Alq3 devices is 1400 cd/m2 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

(C.W. Tang) Slide 18

Electroluminescence in Doped Organic Films

1.

2.6 eV

Excitons formed from combination of electrons and holes transparent anode

electrons

2.7 eV trap states

a-NPD

low work function cathode

Alq3 exciton

holes

5.7eV 6.0 eV

host molecules (charge transport material)

2. Excitons transfer to luminescent dye

dopant molecule (luminescent dye) 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 19

Effect of Dopants on the OLED EL Spectrum

N

1.0 Normalized EL Intensity

O

0.8

N α-NPD

N NC

DCM2:Alq3

CN

PtOEP:Alq3

0.6 Alq3

N

0.4 Al

0.2

N O

N

Pt

N N

3

0.0 400

500

600

700

800

Wavelength [nm] 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 20

Solid State Solvation Effect

DCM2 in Alq3 Alq3

Bulovic´ et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999).

low DCM2

high DCM2

EL Spectrum Tuning

0.8

DCM2 in Alq3

10% 5% 2%

0.6 0.4

1%

Alq3

0.2 0.0

500

600 700 Wavelength [nm]

Temporal Response

800

600

host

1.00 ns 0.75 ns 0.50 ns 0.25 ns

dopant (chromophore) with DIPOLE MOMENT µ 6.976 Flat Panel Display Devices – Spring 2001

wavelength shift Lecture 7

650

700

750

10% DCM2 16 1.50 ns in Alq 3 12 2.00 ns 8 5.00 ns 4

35 nm

0

Slide 21

Intensity [a.u.]

EL Intensity [a.u.]

1.0

Influence of µ0 and µ1 on Chromatic Shift Direction solute (chromophore) WITH DIPOLE MOMENT

µ

solvent

excited state

S1

S1

S0

S0

ground state SOLVENT POLARITY

SOLVENT POLARITY

µ0 < µ1 6.976 Flat Panel Display Devices – Spring 2001

∆E

µ0 > µ1 Lecture 7

Slide 22

Solid State Solvation Effect (SSSE)

áµñ > 0 R

Eloc

áµñ → 0

as R → large

polar lumophore

“self polarization” for strongly dipolar lumophores 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

dipolar host with moment µ Slide 23

Thin Film Photoluminescence DCM2 in Alq3

Intensity [a.u.]

1.0 1% 2% 5% 10% 20% 50%

0.8 0.6 0.4

polar host µ ~ 5.5 D

0.2 0.0

DCM2 in Zrq 4

Intensity [a.u.]

1.0 1% 2% 5% 10% 20% 100%

0.8 0.6 0.4

non-polar host

0.2 0.0 500

600

700

800

900

Wavelength [nm] 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 24

1.0 0.6% 1.5% 3% 6%

0.8 Intensity [a.u.]

Tuning Emission of White OLEDs

0.6 0.4

changing DCM2 in α-NPD concentration (with 40A BCP)

0.2

Ag Mg:Ag

0.0

400

1.0

glass

Intensity [a.u.]

ITO

700

120 Å BCP 80 Å BCP 40 Å BCP

0.8

TPD

600 Wavelength [nm]

Alq3 BCP NPD:DCM2

500

0.6

changing BCP layer thickness

0.4

(with 0.6% DCM2)

0.2 0.0

6.976 Flat Panel Display Devices – Spring 2001

400

500 Lecture 7

600 Wavelength [nm]

700 Slide 25

Fluorescence E

singlet S1 excited state

triplet T1 excited state

Phosphorescence E

S1

T1

FLUORESCENCE

S0

state S0 ground (singlet)

triplet exciton

singlet exciton

• triplet to ground state transition is not permitted

• symmetry conserved fast process ~10-9s 6.976 Flat Panel Display Devices – Spring 2001

PHOSPHORESCENCE

slow process ~ 1s Lecture 7

Slide 26

Phosphorescent OLED Performance Ir(ppy)3

6% Ir(ppy)3 in CBP OLED:

N

at 100 cd/m2 : 4.5 V, 19 lm/W at 10,000 cd/m2 : 7.2 V, 8 lm/W

Ir 3

N

N

CBP 30 10,000 cd/m2

10,000

25

1,000

20 100 cd/m2

100

15

10

10

1

5

0.1

0 0

1

2

3

6.976 Flat Panel Display Devices – Spring 2001

4

5 6 Voltage [V] Lecture 7

7

8

9

Power Efficiency [lm/W]

Luminance [cd/m2]

100,000

10

Slide 27

Simulated Power Consumption (5 inch/320x240 pixels monochrome display) 33% pixels “on” 800

D C L M A

700

Power [mW]

600 500

PM

400 300

-

sc e or u Fl

P

Ph M

t n e

nt e c s e r ho p s o

ent c e s ore u l F -

200

AM

100

rescent o h p s o h P AM -

0

0

50

100

150

200

Brightness [nits] 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

UDC,Slide Inc.28

Monochrome Passive-Matrix Polymer-LED Display

Cambridge Display Technologies, Ltd. 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 29

Full-Color OLED Display

Kodak - Sanyo 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 30

Low Cost Potential

Transparent Cathode Organic LED Multi-Color Icons ITO Anode Transparent Substrate: Glass, Plastic, Metal

• Lower cost materials than LCDs • Fewer process steps than LCDs • Less capital cost than LCDs

15” XGA Cost Comparison 400 350

Other Labor

300 US$

250 200

Module Material Cell Material

150

Array Material

100

Equipment Depreciation Building Depreciation

50

AT SAME YIELDS

0 AMLCD

6.976 Flat Panel Display Devices – Spring 2001

LTPS/OLED

Lecture 7

Source: DisplaySearch

Slide 32

Technology Landscape TECHNOLGY/ FEATURES Brightness

AMLCD

PMLCD

LED

PDP

FED

OLED

Good

Good

Good

Good

Resolution

High

High

Very Good Low

Medium

High

Very Good High

Voltage

Low

Low

High

High

High

Low

Viewing Angle

Medium

Poor

Excellent

Excellent

Excellent

Excellent

Contrast Ratio

Good

Fair

Good

Good

Excellent

Response Time

Good

Poor

Fast

PoorGood Very Fast

Very Fast

Very Fast

Power Efficiency

Good

Good

Medium

Temp Range

Poor

Poor

Form Factor

Thin

Thin

FairGood Very Good Wide

Very Good Wide

Very Good Very Good Thin

Light

Light

Heavy

Light

SmallLarge Laptops, Desktop Average

Small to Medium Small Display Low

Above Avg. Small to Large Signs, Indicators High

Very Good Very Good Very Thin Conformable Light

Large

Medium

Large Screen High

Multiple

Weight Screen Size Primary Applications Cost

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Average

Small to Large Multiple New/Existing Below Average Slide 33

Transparent OLEDs

TOLEDs

MF-TOLEDs

EL Light 500 Å ITO

-

50-100 Å Mg-Ag

V

ETL HTL ITO Glass

+

EL Light

Alphanumeric TOLED Display

> 70% transparent Bulovic´ et al., Nature 380, 29 (1996). Parthasarathy et al., Appl. Phys. Lett. 72, 2138 (1998). 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 34

I - V Characteristics of a Metal Free-TOLED 3

10

2

Current Density (mA/cm2 )

10

1

10

0

10

-1

10

ITO CuPc Alq 3 α-NPD CuPc ITO Glass

EL

+

V

I ∝ V9 EL

-2

10

-3

10

I ∝ V2

-4

10

10-5

MF-TOLED TOLED

-6

10

0.1 6.976 Flat Panel Display Devices – Spring 2001

1 Voltage (V) Lecture 7

VT 10 Slide 35

Transparency/Reflection of a Metal Free-TOLED 1.0

Transmission

Intensity (a.u)

0.8

0.6

0.4

Reflection

CuPc Absorption

0.2

0.0 500

550

6.976 Flat Panel Display Devices – Spring 2001

600

650

Wavelength (nm) Lecture 7

700

750

800 Slide 36

Schematic Cross-Sections of Monochrome OLEDs NON-TRANSPARENT DEVICES

TRANSPARENT DEVICES

CATHODE ON THE BOTTOM

ANODE ON THE BOTTOM

Conventional V +

OLED Ag

V +

Mg:Ag

+ V -

6.976 Flat Panel Display Devices – Spring 2001

TOLED ITO Mg:Ag

Alq 3

Alq 3

TPD

TPD

ITO

ITO

Glass

Glass

OILED ITO

+ V -

TOI-LED ITO

PTCDA

PTCDA

TPD

TPD

Alq 3

Alq 3

Mg:Ag Ag Silicon

Mg:Ag ITO Glass

Lecture 7

Slide 37

TOLED Applications

UDC, Inc. 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 38

Microcavity Effects

Stacked Organic LEDs (SOLEDs)

Glass

head-up, high resolution, true-color, high-contrast, brightly-emissive, flexible displays

E5 E4 E3 E2 E1

E5

Θ

k

ITO

WAVEGUIDE Modes

α - NPD

R-G-B light

SURFACE emission RADIATION Modes EDGE emission

Bulovic´ et al., Phys. Rev. B 58, 3730 (1998).

Alq3

- EL Region -

Metal Losses Mg:Ag Electrode

E4

Surface Plasmons

E3

E1

0.8

E2

Red

520

530

GREEN

0.6

540 550 560

YELLOW

500

y

Glass substrate Gu et al., J. Appl. Phys. (1999). Shen et al., Science 276, 2009 (1997).

580ORANGE

0.4 WHITE

490

0.2 480

0.0

RED

700

BLUE PURPLE

450

0.0

PINK

600 650

400

0.2

0.4

0.6

x 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 39

0.8

Example of a Stacked OLED Structure MATERIAL THICKNESS [Å] n

RED OLED BLUE OLED

V3

V2 V1

6.976 Flat Panel Display Devices – Spring 2001

GREEN OLED

MICROCAVITY 2

MICROCAVITY 1

V4

Ag

1000

----

Mg:Ag

1000

----

Alq3

170

1.72

330

1.72

α-NPD

540

1.78

ITO CuPc

490 80

2.02 1.5+0.8i

α-NPD

250

1.77

Alq’2OPh

390

1.66

Alq3 Mg:Ag

50 80

1.72 ----

Alq3

540

1.72

α-NPD

445

1.77

ITO

1600

1.8

Glass

~1 mm

1.45

3% DCM2 in Alq3

Lecture 7

Slide 40

Advantages of Stacked OLEDs

True-Color Pixels

Up to 3 times the resolution of conventional displays 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 41

I SIT PO DE

(a) ANGLE DEPOSITION WITH A STATIONARY SUBSTRATE

D ON

Θ

SIDE VIEW

SiO2 ITO ITO

DEPO

SITION

(b) ANGLE DEPOSITION WITH A ROTATING SUBSTRATE

TION

ITO Contacts

DIR EC

A Method for Depositing a Multilayer SOLED Structure with Fanned Electrodes

PR

ION CT IRE

TOP VIEW

TOP VIEW

SIDE VIEW

ROTATION AXIS

(c) TWO-COLOR STACKED OLED PR

transparent contacts

SiO2

OLED #2 OLED #1 Glass

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

ITO

Slide 42

Organic LED Backlight Integrated with an AMLCD for full-color displays the backlight can consist of a stack of R,G, and B TOLED backlights

AMLCD ~ 1mm OLED backlight R G B

6.976 Flat Panel Display Devices – Spring 2001

}

Lecture 7

TOLED stack

Slide 43

Principle of OLED Backlight Operation Timing Diagram ON OFF

R sub-cycle AMLCD

AMLCD ON OFF

B-TOLED

ON OFF

G-TOLED

ON OFF

R - on G - off B - off

R-TOLED

R

G

B

time

TOLED Stack

sub-cycles 5 ms

Response Times OLED rise time ~ 1µ µs LCD response time ~ 5 ms

one display write cycle

6.976 Flat Panel Display Devices – Spring 2001

reflector

Lecture 7

Slide 44

White Backlight vs. TOLED R,G,B Stack

2-4 %

TRANSMITTANCE

10 - 12 % pixel width (RED fill factor > 0.9)

pixel width (RED fill factor < 0.3)

AMLCD color filters

TOLED Stack

White Light

R - on G - off B - off

ADVANTAGES OF TOLED STACK BACKLIGHTS

- AMLCD with no sub pixels Þ larger fill factor - no color filters Þ more efficient use of backlight emitted light

3 to 6 fold improvement in efficiency 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 45

OLED backlight AMLCD

computer interface cathode

anode 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 46

Other Approaches for Full-Color Displays Advantage

Disadvantage

Patterning of RGB Emitters

Without CF Efficient light usage

Patterning? → Insoluble polymer

Microcavity

Color Purity Without CF Unpatterned LED

Viewing angle Cost of mirror (SiO2 /TiO2 6 layers)

White Emission with CF

Contrast Color Purity Unpatterned LED

With CF Absorption Loss

Blue Emission w/ Color Conversion

Efficient light usage Color purity Unpatterned LED

Need stable and efficient blue dyes

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 47

Flexible OLED (FOLED) - Ultra lightweight - Thin form factor - Rugged - Impact resistant - Conformable Manufacturing Paradigm Shift Web-Based Processing

6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 48

Low-Cost All-Polymer Integrated Circuits Drury et al., Appl. Phys. Lett. 73, 108 (1998).

LAYOUT

~ 3 mm

ID - VD RESPONSE

· 15 bit programmable code generator · 326 all-polymer transistors (2µµm x 1mm gates) · · 6.976 Flat Panel Display Devices – Spring 2001

µchannel

with vertical interconnections = 3 x 10-4 cm2/Vs, 40-200 Hz bandwidth

3” diameter polyimide substrate

Lecture 7

Slide 49

FOLED-based Pixelated, Monochrome Display

Source: UDC, Inc. 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 50

Transparent FOLED-based Pixel

Source: UDC, Inc. 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 51

The PRESENT …

… and the nearby FUTURE …

… of ORGANIC DISPLAY TECHNOLOGY 6.976 Flat Panel Display Devices – Spring 2001

Lecture 7

Slide 52