

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

EFFICIENT HARDWARE ARCHITECTURES FOR ... - Xun ZHANG

... e.g., an RSA or. DSA (digital signature) operation can involve thousands of tem,â€� School of Electronic and Electrical Engineering,. Kyungpook National ...

 Télécharger le PDF

 221KB taille
 27 téléchargements
 392 vues

 commentaire

 Report

EFFICIENT HARDWARE ARCHITECTURES FOR MODULAR MULTIPLICATION ON FPGAS David Narh Amanor, Christof Paar, Jan Pelzl

Viktor Bunimov, Manfred Schimmler

Horst G¨ortz Institute for IT Security Ruhr University Bochum, Germany email: {amanor,cpaar,pelzl}@crypto.rub.de

Technical Computer Science University of Kiel, Germany email:{vb,masch}@informatik.uni-kiel.de modular multiplication [1] and the interleaved modular multiplication [2]. Other methods target special platforms such as, e.g., conventional 32-bit processors, digital signal processors, or custom designed circuits such as ASICs or FPGAs. In this contribution, we will describe a hardware implementation of two refined algorithmic concepts for the modular multiplication. The Montgomery modular multiplication and the interleaved modular multiplication can be modified such that they yield an area-time efficient design. Since the proposal of such architectures in [3, 4], this is the first contribution providing an actual implementation and, hence, showing a comparison basis of the obtained results. The implementation is done on a typical FPGA. It turns out, that the inherent structure of the (improved) algorithms is very well suited for the implementation on an FPGA. Efficiency gains by table look-ups perfectly meets the availability of look-up tables (LUTs) on a modern commercially available FPGA. Hence, it is possible to efficiently use the LUTs of an FPGA to store pre-computed values with very low area requirements. Furthermore, FPGAs allow for parallel execution of independent instances. We will make use of carry save adders, where several fulladder can work in parallel.

ABSTRACT The computational fundament of most public-key cryptosystems is the modular multiplication. Improving the efficiency of the modular multiplication is directly associated with the efficiency of the whole cryptosystem. This paper presents an implementation and comparison of three recently proposed, highly efficient architectures for modular multiplication on FPGAs: interleaved modular multiplication and two variants of the Montgomery modular multiplication. This (first) hardware implementation of these designs shows their relative performance regarding area and speed. One of the main findings is that the interleaved multiplication has the least area time product of all investigated architectures. As a typical cryptographic application, we show that a 1024-bit RSA exponentiation can be performed in less than 6.1ms at a clock rate of 69MHz on a Xilinx Virtex FPGA. Keywords: modular multiplication, Montgomery multiplication, efficient implementation, hardware, FPGA, cryptography, RSA. 1. INTRODUCTION With the introduction of public-key primitives for tasks such as digital signatures and key establishment, cryptographic applications have become computational demanding . Nowadays, a single public-key encryption such as, e.g., an RSA or DSA (digital signature) operation can involve thousands of modular multiplications with operands of size of 1024 bits and above. On the algorithmic side, many improvements have been proposed in order to speed up operations such as a typical RSA encryption. Many improvements tackle modular multiplication since it is the basis of most current publickey primitives, such as RSA, DSA, Diffie-Hellman key exchange, and Elliptic Curve Cryptosystems. Making modular multiplication efficient directly relates to an increased overall efficiency of a top-level cryptosystem. Enhancements in algorithms are manifold: some methods provide generic improvements, i.e., regardless of the way of implementation (hard- or software). Examples include the Montgomery

0-7803-9362-7/05/$20.00 ©2005 IEEE

2. MODULAR MULTIPLICATION Modular Multiplication is the mathematical operation on integers X · Y mod M with X, Y < M , whereby X and Y are the operands and M is the modulus. In current practical crypto applications X, Y and M are large numbers of 150 bits or more. There are many different algorithms for modular multiplication. In this paper we focus on the two most important ones. During interleaved modular multiplication the multiplication and the calculation of the remainder of the division are interleaved. The advantage is that the length of the intermediate result is only one or two bits larger than the operands. The disadvantage is the use of subtractions in order to reduce the intermediate results. More detailed information about interleaved modular multiplication is given in Section 2.1.

539

Montgomery’s modular multiplication is the most frequently used algorithm for modular multiplication. The computation is done in the Montgomery domain. The advantage of this calculation is that we do not need subtractions in order to reduce the intermediate results. The disadvantage is the fact that the Montgomery’s modular multiplication calculates X · Y · 2−n mod M instead of X · Y mod M and two Montgomery’s modular multiplications are required for one modular multiplication. More detailed information about Montgomery’s modular multiplication is given in Section 2.2. 2.1. Interleaved Modular Multiplication

Fig. 1. Redundant interleaved modular multiplication

The idea of interleaved modular multiplication is very simple: the first operand is multiplied with the second operand bitwise and added to the intermediate result. The intermediate result is reduced with respect to the modulus. For this purpose two subtractions per iteration are required. Algorithm 1 gives a pseudo code implementation of interleaved modular multiplication. The algorithm specified above has

tion requires one carry save adder only. Its complete time complexity is equal to n time delays of one full adder. The algorithm for redundant interleaved modular multiplication is described in [4]. 2.2. Montgomery’s Modular Multiplication

Algorithm 1 Interleaved Modular Multiplication

Algorithm 2 gives a pseudo code implementation of Montgomery’s modular multiplication. A modular multiplication

INPUT: X, Y, M with 0 ≤ X, Y ≤ M OUTPUT: P = X · Y mod M n: number of bits of X xi : ith bit of X

Algorithm 2 Montgomery Modular Multiplication

1. P = 0;

INPUT: X, Y < M < 2n , with 2n−1 < M < 2n and M = 2t + 1, with t ∈ N. OUTPUT: P = X · Y · 2−n mod M . n: number of bit in X, xi : ith bit in X

2. for (i = n − 1; i ≥ 0; i = i − 1){ 3.

P = 2 · P;

4.

I = xi · Y ;

5.

P = P + I;

1. P = 0;

6.

if (P ≥ M) P = P − M ;

2. for (i = 0; i < n; i + +) {

7.

if (P ≥ M) P = P − M ; }

3.

P = P + xi · Y

4.

if (p0 = 1) P = P + M ;

5.

P = P div 2;}

several drawbacks: The first problem is the comparison of P and M in the steps (6) and (7). In the worst case all bits of M and P must be compared. This problem can be solved by an approximative comparison with 2n instead of M . The second problem is the number of additions or subtractions in the steps (5), (6), and (7). All these operations can be replaced by one addition only. In order to do so, we preestimate the number of M s to be subtracted, and find out if Y will be added in the next iteration of the loop. There are only few possible values for this estimation. These can be pre-calculated and stored in a look-up table. In each iteration of the loop, the estimation of the previous iteration can be added to the intermediate result. Furthermore, we can replace the slow non-redundant adder by the fast redundant carry save adder. The time complexity of a carry save adder is equal of the time delay of one single full adder. The following data-flow diagram in Figure 1 shows this optimization. The redundant interleaved modular multiplica-

6. if (P ≥ M) P = P − M ;

for numbers in standard representation requires two modular Montgomery multiplications. The advantage of Algorithm 2 is that it does not require any subtractions. However, the algorithm requires two additions per iteration of the loop, and these additions are slow, because they are non-redundant. This problem was solved in [5]: The standard additions were replaced by carry save additions. This version requires two carry save additions per iteration of the loop only. The time complexity of each iteration is equal to the time delay of two full adders. Consequently, the time complexity of one Montgomery modular multiplication is equal to 2n time delays of one full adder. A further development of Montgomery’s modular multiplication was described in [3]. One of four different values (0, M, Y , and Y + M) can be added during each iteration of the loop. All these values can be stored in

540

3.2. Results The results of the design as depicted in Tables 1 and 2 were generated after place and route for the Xilinx FPGA for each of the implemented architectures. The tables and figures represent the overall hardware requirements for the complete multipliers including the block of registers for holding the input and output bits. The Montgomery architecture with Table 1. Percentage of configurable logic block slices (out of 19200) occupied depending on the bitlength (XVC2000E-6) Precision in bit 32 64 128 256 512 1024

Fig. 2. Montgomery modular multiplication with one carry save adder

a look-up table. The corresponding value can be selected and added to the intermediate result. The advantage of this algorithm is its low time complexity of n time delays of one full adder for the Montgomery modular multiplication.

Montgomery with two CSAs 1.2% 2.4% 4.7% 9.4% 16.1% 45.0%

Montgomery with one CSA 0.7% 1.4% 2.7% 5.4% 8.0% 21.0%

Redundant Interleaved 0.7% 1.4% 2.7% 5.4% 8.0% 24.0%

two carry save adders occupies the largest number of configurable logic block (CLB) slices for all implementations. The CLB requirements for the optimized architectures, namely, Montgomery with one CSA and the redundant interleaved are approximately the same. In Figure 3, the three imple-

3. IMPLEMENTATION Table 2. Minimum period and maximum frequency depending on the bitlength (XVC2000E-6)

The primary objective of this paper is to provide a fair comparison of the efficiency of architectures for the modular multiplication in hardware.

Bit

3.1. Methodology The implementation consists of two essential steps: First, the implementation and simulation of the targeted architectures in a high level programming language (JAVA). Second, the implementation, Simulation, and Synthesis in VHDL. All architectures have been synthetisized for the Xilinx FPGA XVC2000E-6. The design capture of the modular multiplication architectures using VHDL was done for 32 to 1024 bit. The basic units of the architectures which comprises carry save adders, shift registers and registers were modeled as components which are independently functional. In all the implementations, only standard logic data types are used to provide portability (IEEE 1164). The state machine for the whole architecture consists of 5 states: Idle, Loading, Loading Complete/ Starting, Running, Finished. Precision RTL Synthesis tools were used to map the implemented architectures to Xilinx Virtex 2000E device. The area and timing reports after place and route are to be used to compare the implemented architectures.

541

32 64 128 256 512 1024

Montgomery with two CSAs 17.7ns (56.5MHz) 20.3ns (49.2MHz) 18.7ns (53.4MHz) 21.3ns (47.0MHz) 24.5ns (40.8MHz) 23.8ns (42.1MHz)

Montgomery with one CSA 16.4ns (61.1MHz) 16.0ns (62.5MHz) 19.5ns (51.3MHz) 21.8ns (46.0MHz) 23.1ns (43.3MHz) 20.4ns (49.0MHz)

Redundant Interleaved 14.2ns (70.2MHz) 17.3ns (57.7MHz) 20.7ns (48.4MHz) 21.4ns (46.8MHz) 15.4ns (64.8MHz) 14.4ns (69.4MHz)

Fig. 3. Comparison of AT-Products (normalized)

mented multipliers are examined in terms of the product of area and time. The percentage of CLBs occupied is used to represent the approximate area. The absolute time for computing a single modular multiplication is obtained by the product of minimum period times number of required clock cycles for completing a modular multiplication.

optimized interleaved multiplier and two variants of a Montgomery multiplier have been made. All architectures have been implemented in VHDL for various different bitlength and were synthetisized for the Xilinx XVC2000E-6 FPGA. The architectures implementing a Montgomery multiplication with one CSA and the interleaved multiplication turn out to be the smallest designs compared to the Montgomery architecture with two CSAs. Regarding the absolute running time of a modular multiplication, the optimized interleaved design is the fastest due to a potentially higher clock frequency. The most efficient multiplier in terms of the product of area and time for all implementations is the optimized interleaved architecture. The implementations represent the proposed asymptotic advantage of the algorithms as described in [4]. A possible application for the presented architectures is, e.g., the acceleration of public-key primitives such as RSA, ElGamal, or elliptic curve operations. With the efficient interleaved multiplier at hand, an RSA public key operation with CRT and with operands of size of 1024 bits takes no longer than 6.1ms on a Xilinx XVC2000E-6 FPGA.

3.3. A Case Study: RSA The basic operation in the RSA encryption and signature scheme is inherently based on modular multiplication. I.e., for every public key operation, a modular exponentiation of numbers of size, e.g., of N = 1024 bit is computed 1. For an RSA encryption we need to compute the modular exponentiation y = xb mod m, where all operands are approximately of the same size (e.g., N ≈ 1024 bit). The exponentiation can be done efficiently with the square and multiply algorithm using N · 1.5 multiplications. For a Montgomery multiplier, we additionally need to convert back to the normal representation, thus, increasing the multiplication count by one. Hence, the time for an N -bit RSA encryption using the three different multiplier architectures can be computed on basis of the time of a single multiplication as Tres = N · 1.5 · Tmul,N . If we apply the Chinese Remainder Theorem (CRT), the computational complexity of an N -bit exponentiation decreases to two exponentiations of N/2-bit. Since the application of the CRT is common in practice, we also provide a time estimate for RSA with CRT. Note that all the running times do not include the preprocessing and a final conversion from the redundant CSA format. However, the required time for the preprocessing and the final conversion (a carry addition) is negligible compared to the overall running time.

5. REFERENCES [1] P. Montgomery, “Modular Multiplication without Trial Division,” Mathematics of Computation, vol. 44, pp. 519–521, 1985. [2] G. Blakley, “A Computer Algorithm for Calculating the Product A · B modulo M ,” IEEE Transactions on Computers, vol. C-32, no. 5, pp. 497–500, May 1983. [3] V. Bunimov, M. Schimmler, and B. Tolg, “A Complexity-Effective Version of Montgomery’s Algorithm,” in Workshop on Complexity Effective Designs, ISCA’02, May 2002, http://www.ee.rochester.edu:8080/ ∼albonesi/wced02/.

Table 3. Running time estimates of a 1024-bit RSA encryption with different multiplier architectures with and without CRT (XVC2000E-6) Architecture Redundant interleaved mult. Montgomery mult. with 1 CSA Montgomery mult. with 2 CSAs

Frequency 69.4MHz 42.1MHz 49.0MHz

Tres 22.7ms 37.5ms 32.2ms

[4] V. Bunimov and M. Schimmler, “Area and Time Efficient Modular Multiplication of Large Integers,” in IEEE 14th International Conference on Applicationspecific Systems, Architectures and Processors, June 2003.

Tres,crt 6.1ms 9.1ms 9.7ms

[5] Y. Kim, W. Kang, and J. Choi, “Implementation of 1024-bit modular processor for RSA cryptosystem,” School of Electronic and Electrical Engineering, Kyungpook National University, 1370 Sankyok-Dong, Book-Gu, Taegu, Korea, Tech. Rep., 2000, http://www. ap-asic.org/2000/proceedings/10-4.pdf.

4. CONCLUSION The work at hand presents the first documented implementation of recently proposed hardware architectures for areatime efficient modular multiplication. A thorough investigation of three different multiplier architectures, namely an 1 Current

protocols such as, e.g., SSL/ TLS predominantly use 1024 bit operands, increasingly 2048 bit operands.

542

des documents recommandant

[image: alt]

EFFICIENT QUADRATIC PLACEMENT FOR FPGAS ... - Xun ZHANG

Tool for FPGAs. Quadratic placement algorithms try to minimize total squared wire length by solving linear equations. The resulting placement tends to locate all ...

[image: alt]

CONFIGURABLE HARDWARE IMPLEMENTATION OF ... - Xun ZHANG

ious buffers of the T-STD parts (video, audio or system). Real time errors flags are ... project and by the EQUAST. Consortium (THALES B&M, TDF, LORIA, and LIEN) (url : ters.scte.org/cascade/DVB%20Overview.ppt. [2] ISO/IEC 13818-1.

[image: alt]

EFFICIENT EXECUTION ON RECONFIGURABLE ... - Xun ZHANG

temporal parallelism to the execution paths on the reconfig- urable device. ... INTRODUCTION. Parallel processing compared to sequential execution brings.

[image: alt]

EFFICIENT FPGA IMPLEMENTATION OF CORDIC ... - Xun ZHANG

Departamento de IngenierÃa ElectrÃ³nica, Universidad PolitÃ©cnica de Valencia. 46730 Grao way that the control signal di is generated in equation (1). Clearly ...

[image: alt]

AN EFFICIENT AND SCALABLE ARCHITECTURE FOR ... - Xun ZHANG

Pedro O. Domingos, Fernando M. Silva, HorÃ¡cio C. Neto. Dept. of Electrical and Computer Engineering, IST/INESC-ID, Portugal ... tude over high-end software implementations are possible, using a GAs and embedded systems. The results ...

[image: alt]

CLUSTER ARCHITECTURE FOR ... - Xun ZHANG

ABSTRACT. We describe a dynamic reconfigurable baseband signal- processing engine suitable for mobile communications that require short operation latency ...

[image: alt]

HARDWARE EMULATION OF A NETWORK ON CHIP ... - Xun ZHANG

HARDWARE EMULATION OF A NETWORK ON CHIP ARCHITECTURE BASED ON A. CLOCKWORK ROUTED MANHATTAN STREET NETWORK.

[image: alt]

ziggurat-based hardware gaussian random number ... - Xun ZHANG

simulation applications including heat transfer [1], commu- ... 0-7803-9362-7/05/$20.00 Â©2005 IEEE. 275 ... The remainder of this paper is organized as follows. pdf curve, otherwise it is rejected. nals for the register file and the select

[image: alt]

High-speed and memory efficient TCP stream scanning ... - Xun ZHANG

and memory efficient TCP stream level string matching using FPGA. Packet loss and ... For an accurate matching, TCP-stream-level matching is necessary.

[image: alt]

Untitled - Xun ZHANG

group, and the European Union End to End Reconfigurability Project (E2R) ... train, taxi, next flight to . . . , restaurant, tickets to the opera, etc.). Concierge services ... core network infrastructure containing the billing system and through whi

[image: alt]

AREA-EFFICIENT 2-D SHIFT-VARIANT CONVOLVERS ... - Xun ZHANG

follows: N=2s+1. Because we will read more columns than needed with the same transaction and we should avoid reading the same columns more than once, ...

[image: alt]

MULTIDIMENSIONAL DYNAMIC PROGRAMMING FOR ... - Xun ZHANG

We have already proposed a computational method for three-dimensional alignment using reconfigura- tion and co-processing by FPGA and software[14]. In this.

[image: alt]

DUAL FIXED-POINT : AN EFFICIENT ALTERNATIVE TO ... - Xun ZHANG

energy efficient than equivalent floating-point designs. A n-bit DFX number ... such tools is an accurate truncation/rounding error model for the DFX modules.

[image: alt]

EFFICIENT SCHEDULING OF RATE LAW FUNCTIONS ... - Xun ZHANG

Of course, while this sharing first. 667 ... ical path first scheduling policy which achieves the short- est critical path execution Biochemistry, vol. 130, no. 8, pp.

[image: alt]

PGR : A SOFTWARE PACKAGE FOR ... - Xun ZHANG

ware that dynamically generate HDL description for a FEU. The approach of dynamic ... As well as communication software, the performance of a particular ...

[image: alt]

FPGA'S MIDDLEWARE FOR SOFTWARE ... - Xun ZHANG page

For each layer an API provides access to the specific resources ... are used to merge all the platforms into a single virtual one. 0-7803-9362-7/05/$20.00 ©2005 IEEE. 598 ... API. Middleware. Abstraction Software Layer (P-HAL). Platform 2. Platform 3

[image: alt]

Layered reconfiguration management for ... - Xun ZHANG page

The layered reconfiguration management is represented on two reconfiguration ... of corresponding bitstream file and their configuration time. The system consists of a ... In this paper, we have described one organization solution, the layered ...

[image: alt]

software ... - Xun ZHANG

The approach is highly suitable for embedded soft-core SoPC applications. ... adequate design platforms and tools, which enable optimal exploitation of the considered architectures. IEEE Trans Consumer Electron 1992;38(1):18â€“34. 110.

[image: alt]

TRIDENT - Xun ZHANG

experimentation, analysis, and optimization of floating point algorithms on FPGAs ... front-end accepts programs written in C, C++ or potentially other languages,.

[image: alt]

XHwIcap_GetClbBits - Xun ZHANG

Dec 6, 2005 - Powerful embedded processing and real-time operating systems ... Applications of Reconfiguration Linux Kernel's /proc filesystem.

[image: alt]

uncorrected proof - Xun ZHANG

May 15, 2007 - 68 to medium volumes of production. chain. It should be noted that the MicroBlaze processor. 346 and its C compiler Commerce, 1977.

[image: alt]

HETEROGENEITY EXPLORATION FOR MULTIPLE 2D ... - Xun ZHANG

Christos-S. Bouganis, Peter Y.K. Cheung, and George A. Constantinides. Department of Electrical & Electronic Engineering,. Imperial College London,.

[image: alt]

SOFTWARE ... - Xun ZHANG

representative applications for large format printers. These ... Packard, Inkjet Commercial Division (ICD), R&D Large-Format ... the large format printers industry.

[image: alt]

MAGNETIC REMANENT MEMORY ... - Xun ZHANG

bit stream and partial dynamic reconfiguration. Some FPGAs and CPLDs use flash memory. This type of memory provides non volatility. However flash can be.

×
Report EFFICIENT HARDWARE ARCHITECTURES FOR ... - Xun ZHANG

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

