Effets des facteurs induits par l'hypoxie dans l ... - DREPANO-Site

Hemorrhage. Trauma. Epilepsy ... Increased cerebral infarct volumes in polyglobulic mice ... Chronic EPO expression increases infarct volume. Tg-EPO. +/+ ...
4MB taille 58 téléchargements 226 vues
Effets des facteurs induits par l’hypoxie dans l’ischémie cérébrale : quand l’EPO dope le cerveau

Effects of hypoxia-inducible factors in cerebral ischemia: when EPO dopes the brain

Myriam BERNAUDIN, CR1 CNRS “Hypoxia and cerebrovascular pathophysiology” CERVOxy group, Neurodegenerescence: models and therapeutic strategies UMR-CNRS 6185, CYCERON, CAEN, France

Cerebral ischemia artery wall

emboli

artery wall

blood

Embolic stroke

blood

thrombus atherosclerosis

Thrombolotic stroke

¾ 1st cause of morbidity ¾ 3rd cause of mortality Therapeutics : - rt-PA : thrombolytic treatment - Prevention hypertension diabete…

Hypoxic inducible factors and cerebral ischemia Neuronal death Glial reaction Inflammation Angiogenesis Neurogenesis

O2 Energy

Excitatory amino acids, free oxygen radicals

Cytokines Organ response

Hypoxia Molecular response: HIF-1 EPO, VEGF…

HIF-1α

HIF-2α

3d Marti et al. Am. J. Pathol. (2000)

EPO was the first target gene for HIF-1 to be identified and is still one of the most best-characterized genes activated by hypoxia.

Erythropoietin (EPO)

- glycoprotein of 34kDa; kidney, liver … - growth factor specific for erythroblast differentiation and proliferation - effect on the platelet maturation (Krantz, 1991) - angiogenic (Anagnoustou et al., 1990 ; Carlini et al., 1995 ; Nagai et al., 1995 ; Ribatti et al., 1999)

- gene cloned in Human by Jacobs et al. (1985) - 79-94% of homology between species - transcriptional factor = HIF-1 (hypoxia inducible factor-1)

HIF-1 activation mechanisms induced by hypoxia Normoxia

O2

CO2

2-oxoglutarate

succinate

HIF-1α

pVHL P OH HIF-1α

P OH HIF-1α

Prolyl-4-hydroxylases (HPH)

E3 Ubiquitin Ligase

PROTEASOME

Degradation

Ub

(Fe2+)

Hypoxia

HIF-1α

Iron chelators (DFX) CoCl2

O2 2-oxoglutarate

P

OH

succinate N

HIF-1α

Asparaginyl hydroxylase (FIH-1) « Factor inhibiting HIF-1 » (Fe2+)

Transcriptional activation

ARNT

CO2

HIF-1α

P

P300 /CBP

P300 /CBP

HIF-1 α P P

BTM

ARNT HRE

Target genes

u ro ns As tro cyt es RB E4

EPO: cellular sources and targets Hypoxia

Neurons

0h 2h 6h 12h 24h

Ne

NMDA 10 µM

EPO

EPO

β-actin 100 pA

Astrocytes

5 sec

0h 2h 6h 12h 24h u ro ns As tro cyt es RB E4

Bernaudin et al., Glia (2000)

Ne

EPOR

Bernaudin et al., JCBFM (1999)

EPO Hypoxia Cortex CoCl2 0h 6h DFX

EPO β-actin

β-actin

DFX, CoCl2 Bernaudin et al., Glia (2000)

EPO may have autocrine and paracrine roles in the brain.

LDH activity release (% )

EPO effect on neurons in vitro

NMDA

Bernaudin et al., JCBFM (1999)

EPO pretreatment protects cortical neurons from an excitotoxic stress.

EPO receptor expression after cerebral ischemia

Control

1d

ZI

3d

7d

EPO effect in cerebral ischemia

12

Infarcted area (mm2)

Vehicle

Vehicle rMoEpo

rMoEpo

10 8 * * *

6

*

4

* *

2

*

0 -2

-4

-3

-2

-1

0

1

*

2

3

4

Distance from Bregma (mm)

Epo pre-treatment (i.c.v.) reduced of 47% the infarcted volume

EPO and cerebral ischemia: pleiotropic roles EPO / EPO-R

Neuroprotection

Neurorepair

Control

rMoEpo

Endothelial cells Proliferation (% of control)

• Glial reaction • Inflammation • Angiogenesis …

*

60

40

*

20

0 0

Bernaudin et al., JCBFM (1999)

*

150

300 bFGF rHuEpo (pM) (2ng/ml)

When EPO dopes the brain

EPO

Inflammatory cells

Capillary

Neuronal death Hemorrhage Trauma Epilepsy Parkinson disease ALS EAE Retina ischemia Schizophrenia?

Neurogenesis

Target

Bernaudin and Petit, M&S (2000)

Neuroprotective effect of EPO: potential mechanisms Reduced-glutamate exocytosis Ca2+ influx

Anti-apoptotic pathways JAK2, MAPK, Stat5 NF-kB, ERK, PI3K/Akt Bcl-2 Bcl-XL XIAP C-IAP2

Reduced-NO / anti-oxydant BBB integrity Reduced eNOS

Nat Rev Neurosci, 2005

SSS, NIH SS, Barthel index, Ranking scale S100β assay

Stroke 0d

1d

2d

3d

7d

18 d

30 d

MRI

rhEPO (Roche, EPO-β) (100 000 UI) i.v. 3.3X104 IU/50ml/30min for 3 days or saline (0.9% NaCl) Safety part : 13 patients Efficacy part : 40 patients

Inclusion criteria Age < 80 years-old Stroke at the MCA EPO administration < 8 h

EPO in clinic

Science et Avenir, mars 2004

EPO and stroke: detrimental chronic effect

Infarct volume (mm3) at 24 h

* T-test P< 0,001

*

60 50 40 30 20 10 0

Control

Tg-EPO -/+

Tg-EPO +/+

Chronic EPO expression increases infarct volume Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. Wiessner C et al., 2001. J Cereb Blood Flow Metab.

Modified EPO molecules: no hematopoietic effect

¾ CEPO = carbamylated EPO

Hypoxic inducible factors and cerebral ischemia Hypoxia and Neuroprotection

Neuroprotection Tolerance and neuroprotection

Hypoxie Neurogenesis

Angiogenesis

Functional recovery

¾ Hypoxic preconditioning

Adaptation to hypoxia : tolerance to cerebral ischemia HYPOXIA 8%O2

ISCHEMIA Reoxygenation 24 h

Penumbra

ISCHEMIA Core

Endogenous mechanisms

Neuroprotection

¾ Neonatal rat, hypoxia 3h Gidday et al., Neurosci Lett (1994) ¾ Adult mice, hypoxia 1h, 3h, 6h Bernaudin et al., JCBFM (2002) To study the endogenous molecular mechanisms that may explain how hypoxic preconditioning protects against subsequent ischemia To provide novel therapeutic targets for treatment of cerebral ischemia and other brain disorders

Adaptation to hypoxia : tolerance to cerebral ischemia ¾ In the neonatal model Reoxygenation

Hypoxia

HIF-1α

¾ In the adult model Hypoxia C

1h

3h

VEGF

5

2.5

4 Fold change

24 h C 3h

Fold change

0h C 3h

EPO

3.0

2.0 1.5 1.0 0.5

3 2 1 0

0.0 Control

0hr R

6hr R 18hr R Hypoxia 3hr

24hr R

Control

0hr R

6hr R 18hr R Hypoxia 3hr

Hypoxia C

1h

3h

6h

EPO

6h

HIF-1α

VEGF

Hypoxic preconditioning: HIF-1, EPO & VEGF implication Prass et al., Stroke (2003)

24hr R

Genes increased by hypoxic preconditioning ¾ In the neonatal model

¾ In the adult model

EPO VEGF GLUT-1 Adrenomedullin Prolyl-4-hydroxylase α MAP kinase phosphatase-1

EPO VEGF GLUT-1 Adrenomedullin RTP801 P21 Tyrosine hydroxylase

HIF-1 dependant

¾ Common in both models Hypoxia HIF-1 EPO

VEGF

ADM

MTF-1

Egr-1

?

MT-1

VEGF

?

Bernaudin et al., JBC (2002) and Neurobiol Dis (2005)

Neuroprotection

Hypoxic inducible factors and cerebral ischemia Hypoxia and Repair

Neuroprotection

Angiogenesis

Neurogenesis

Functional recovery

Hypoxia

VEGF and cerebral ischemia VEGF

PECAM

Control

EF5 (hypoxia)

Ischemia

Periphery

Core

20 h

12 h

3d Marti et al. Am. J. Pathol. (2000)

Pharmacological strategies: HIF-1 stabilisation 1d

60d

Time

Functional recovery ?

DFX Ischemia MCAo, rat

HIF-1 activation

Infarct volume (mm3)

* 350 300 250 200 150 100 50 0

Control DFX

DFX reduces brain damage

(Fréret et al., 2006 Eur. J. Neurosci.)

Pharmacological strategies: HIF-1 stabilisation

Staircase

Sensori-motor performances *

Pre-

Post-

Pre-

Post-

(1 week)

(2 months)

(1 week)

(2 months)

Ischemia Solvant

Ischemia DFX

Neurological score

12 10 8 6 4 2 0

30 25

**

20

*

15

Ischemia + vehicle (n=6) Ischemia + DFX (n=7)

*

10

*

5

Days

0 0

1

2

3

7

8

9 10 11 29 30 31 32 56 57 58 59 60

DFX improves functional recovery (Fréret et al., 2006 Eur. J. Neurosci.)

Neurogenesis and hypoxia: facilating endogenous neurogenesis Hypoxia (HIF-1) VEGF, EPO, ? Cerebral stem cells

Ê neuronal differentiation

(Studer et al., J Neurosci 2000; Shingo et al., J Neurosci 2001; Jin et al., PNAS 2002; Sun et al., J Clin Invest 2003; Wang et al., Stroke 2004)

Endogenous neurogenesis ¾ EPO, VEGF ...

Stem cell therapy ¾ NSC, MSC, ES ...

MSC differentiation into neuron-like cells: a role of HIF-1 ? Progenitor

Neuron-like cells

CoCl2 Nestin

¾ Morphological changes ¾ Neuronal marker expression ¾ Response to neurotransmitters ?

% of responding cells to dopamine

Tuj1

MAP2

*

100 80 60 40 20 0 Control

Fura-2

(Pacary et al., 2006 J. Cell. Sci.)

CoCl2

MSC differentiation into neuron-like cells : a role of HIF-1 ? Control a

Ab HIF-1

Cytoplasm Control

CoCl2 3h

CoCl2 3h HIF-1α

HIF-1α

b

mRNA levels/control

Nucleus Control

CoCl2 3h

5 4 3 2 1 0

EPO

HIF-1α/PI

3d Control CoCl2

6h

HIF-1α

c

24h

Adaptation to hypoxia: HIF-1 activation Brain ischemia

HIF-1β

HIF-1α

“O2 Sensor”

Blood flow

Hypoxia Hypoglycemia

HIF-1 binding sites VEGF EPO ADM NOSi Glycolytic enzymes GLUT-1

Neurogenesis

ATP

Target genes BNIP3, Others ...

Angiogenesis Vasodilatation

Apoptosis

Blood flow

Protection, regeneration and functional recovery

Cell survival

Thanks to

Dr. Edwige Petit Dr. Simon Roussel Dr. Pascale Schumann-Bard Dr. Omar Touzani Emilie Pacary, PhD student Thomas Fréret, PhD student Didier Divoux Jérôme Toutain

Pr. Hugo Marti Heidelberg, Germany Pr. Frank R. Sharp Dr. Yang Tang Cincinnati, USA