Dynamical heterogeneity at the jamming transition of a colloidal

Glass transition as a (dynamical) critical phenomenon ? ... Temporally heterogeneous dynamics. 10. -4. 10. -3 ..... Mean squared change of phase for. 1 event ...
2MB taille 1 téléchargements 313 vues
Dynamical heterogeneity at the jamming transition of a colloidal suspension Luca Cipelletti1,2, Pierre Ballesta1,3, Agnès Duri1,4 1LCVN

Université Montpellier 2 and CNRS, France 2Institut Universitaire de France 3SUPA, University of Edinburgh 4Desy, Hamburg

Soft glassy materials φg ∼0.58

Cheng et al. PRE 02

viscosity

φ

Confocal microscopy image by Eric Weeks

Van Megen et al. PRE 98

Intermediate scattering function

Soft glassy materials

Outline • What are dynamical heterogeneities ? • Why should we care about DH ? • How can we measure DH ? • DH (very) close to jamming

Dynamical Heterogeneity PDF of particle displacements in a dense colloidal suspension

Optical microscopy Kasper et al. Langmuir 98

Confocal microscopy Kegel et al. Science 00

Dynamical Heterogeneity

String-like motion in a LJ supercooled fluid

Donati et al. PRL 98

Dynamical Heterogeneity Relaxation time in a colloidal suspension near close packing

τs (sec)

1000

500

0

0

40000

tw (sec)

80000

Why are DHs important? Crucial role in the slowing down of the dynamics close to the glass transition

• Adam-Gibbs: relaxation through cooperatively rearranging regions. Their size increases approaching the glass transition. • Glass transition as a (dynamical) critical phenomenon ? •

DHs may allow one to discriminate between competing theories

Size of DH: simulations

T=2

T = 0.6 Less mobile particles in a LJ supercooled fluid (Tc ~ 0.435)

Berthier PRE 04

T = 0.45

What quantities should we measure? Space and time-resolved correlation functions f(t,t+τ,r) or particle displacement

• Simulations (far from Tg!) • (Confocal) microscopy on colloidal systems • Granular systems (2D, athermal, see Dauchot’s talk)

Confocal microscopy on colloidal HS From E. Weeks web page

Confocal microscopy on colloidal HS Weeks et al. Science 00

?

Weeks et al., J. Phys. Cond. Mat 07

What quantities should we measure? Space- and time-resolved correlation functions f(t,t+τ,r) or particle displacement • Simulations (far from Tg!) • (Confocal) microscopy on colloidal systems (limited statistics, stringent requirements on particles (size, optical mismatch…)) • Granular systems (2D, athermal, see Dauchot’s talk) Time-resolved correlation functions f(t,t+τ) (no space resolution)

Temporally heterogeneous dynamics

correlation

1.00 0.75 0.50 0.25 0.00 -4

-3

-2

-1

0

1

2

10 10 10 10 10 10 10 10

t (arb. un.)

homogeneous

3

1.00

1.00

0.75

0.75

correlation

correlation

Temporally heterogeneous dynamics

0.50 0.25 0.00

0.50 0.25 0.00

-4

-3

-2

-1

0

1

2

10 10 10 10 10 10 10 10

t (arb. un.)

homogeneous

3

-4

-3

-2

-1

0

1

2

3

10 10 10 10 10 10 10 10

t (arb. un.)

heterogeneous

1.00

1.00

0.75

0.75

correlation

correlation

Temporally heterogeneous dynamics

0.50 0.25

0.50 0.25 0.00

0.00 -4

-3

-2

-1

0

1

2

10 10 10 10 10 10 10 10

t (arb. un.)

homogeneous

3

-4

-3

-2

-1

0

1

2

3

10 10 10 10 10 10 10 10

t (arb. un.)

heterogeneous

Dynamical susceptibility in glassy systems



Supercooled liquid (Lennard-Jones)

Lacevic et al., PRE 2002

χ4 = N var[Q(t)]

Dynamical susceptibility in glassy systems

Nblob regions

χ4 = N var[Q(t)] ~ N (1/Nblob) = N/Nblob 3 d χ4 (τ) ~ ∫ r f (0, t ' , t '+t ) f (r, t ' , t '+t )

t'

How can we measure χ4?

Time-resolved light scattering experiments (TRC)

Laser beam

Experimental setup

CCD Camera

Random walk w/ step l*

Change in speckle field mirrors change in sample configuration

CCD-based (multispeckle) Diffusing Wave Spectroscopy

Time Resolved Correlation

lag τ

time tw < Ip(tw) Ip(tw +τ)>p

degree of correlation cI(tw,τ) = -1 < Ip(tw)>pp

< Ip(tw) Ip(tw +τ)>p Time Resolved Correlation degree of correlation cI(tw,τ) = -1 < Ip(tw)>pp Average over tw

intensity correlation function g2(τ) − 1

g2(τ)-1

0.2

0.1

0.0 -2

10

-1

10

1

τ (sec)

g2(τ) − 1

Average dynamics

< Ip(tw) Ip(tw +τ)>p Time Resolved Correlation degree of correlation cI(tw,τ) = -1 < Ip(tw)>pp Average over tw

fixed τ, vs. tw

intensity correlation function g2(τ) − 1

fluctuations of the dynamics 0.31

cI(t,τ)

g2(τ)-1

0.2

0.1

0.30 0.29 0.28

0.0 5

-2

10

-1

10

1.2x10

5

2.0x10

1

t (sec)

τ (sec)

g2(τ) − 1

5

1.6x10

Average dynamics

var(cI)(τ)

‘dynamical susceptibility’ χ4 (τ )

Experimental system

PVC xenospheres in DOP • radius R ~ 10 µm • Polydisperse • Brownian • Excluded volume interactions • ϕ = 64% – 75% ( Note: ϕg ~58%)

« Diluted » samples

-15

10

-16

2

(m )

10

ϕ = 28% ϕ = 46%

-17

10

Brownian behavior

1

-18

10

-19

10

-20

10

-6

10

-5

10

-4

10

-3

10

τ (sec)

-2

10

-1

10

0

10

« Diluted » samples

-15

10

R/100 !!

-16

2

(m )

10

ϕ = 28% ϕ = 46%

-17

10

1

-18

DWS probes dynamics on a length scale

-19

λl*/L ~ 10 – 35 nm