Diffusion at the surface of Topological Insulators - Pierre Adroguer

Insulating bulk with robust conducting surface states : Quantum Hall ... 2 /π h). 1.5K. 2K. 3K. 4K. 5K. 7K. 10K. 15K. V g=6V pi po. ,. Bulk. HgTe. Bi2Te3 thin film.
4MB taille 50 téléchargements 257 vues
Diffusion at the surface of Topological Insulators P. Adroguer, D.Carpentier, J. Cayssol, E.Orignac Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France

http://arxiv.org/abs/1205.5209

Outline ••

Topological Insulators surface states

••

Classical conductance

 /(b=0)

2

b

N.P

b4

••

Coherent transport

Exp.

!∆Σ "B#$ !∆Σ "B $ 0#$ 1.0

0.8

Bi 2 Te3

0.6

0.4 E=0.1 eV 0.2 E=0.2 eV E=0.3 eV !1.0

!0.5

0.0

EF (eV)

0.5

B 1.0 B0

Topological insulators ••

Insulating bulk with robust conducting surface states : Quantum Hall effect ?

B

••

Paradigm : 2D + Time Reversal symmetry breaking

Topological insulators •• Paradigm : 2D + Time reversal symmetry breaking •• 2D + Time-reversal symmetry : Spin orbit coupling Vs. magnetic eld Kane, Mele 2005 ; Bernevig, Zhang, 2006

Pict. : Murakami

••

3D + TRS : topological insulators ; realized with Bi1-xSbx , Bi2Te3 , Bi2Se3 , Strained HgTe , etc

Topological insulators surface states Quantum Hall Effect

••

Robust edge states

3D TI

••

Robust surface states (odd number)

••

Responsible of electronic transport Topological Insulator

!1.5

••

Responsible of electronic transport Buttiker, 1982

••

!1.0

!0.5

0.0

0.5

1.0

1.5

EF

Linear dispersion + momentum-spin locking : Dirac fermions

Transport of these surface states

ARPES data for the surface states •• ••

Dirac fermions : linear dispersion Magnetic spin in the plane, winding around vertical axis

S.Y. Xu et al. (2011)

••

Richer structure, hexagonal shape of the Fermi surface in Bi2Te3 and Bi2Se3

Y.L. Chen et al. , 2009

Transport experiments •• ••

Thin lms : improve surface/bulk ratio, gating both surfaces Eto et al. , 2010

Strained HgTe : no bulk conductance

Magneto-transport : weak anti-localization 1.5K 2K 3K 4K 5K 7K 10K 15K

0.6

0.4

pi , po

2

••

Residual bulk conductance

δσ xx (e /πh)

••

Bi2Te3 thin lm

Bulk HgTe

0.2

0.0

V g=6V -0.4

Kong et al. , 2010

-0.2

Bouvier et al. , 2011

0.0

B (T )

0.2

0.4

Dirac fermions system •• •• •• ••

Graphene  : sublattice 2 x 2 cones TRS : no constraint Trigonal warping at high energies

H = !vf (!σ × !k).ˆ z

•• •• •• ••

TI surface state  : magnetic spin 1 cone (odd) TRS : constraint Hexagonal warping at high energies

Departure from Dirac fermions •• ••

Dirac point burried in bulk valence band

••

Hexagonal warping : effect on transport

High energy regime natural

1.5K 2K 3K 4K 5K 7K 10K 15K

0.6

2

δσ xx (e /πh)

0.4

pi , po

0.2

0.0

V g=6V -0.4

-0.2

0.0

B (T )

0.2

0.4

Outline ••

Topological Insulators surface states

••

Classical conductance

 /(b=0)

2

b

N.P

b4

••

Coherent transport

Exp.

!∆Σ "B#$ !∆Σ "B $ 0#$ 1.0

0.8

Bi 2 Te3

0.6

0.4 E=0.1 eV 0.2 E=0.2 eV E=0.3 eV !1.0

!0.5

0.0

EF (eV)

0.5

B 1.0 B0

Model •• Fermi surface deformation

Different energies Fermi surfaces

kmax

kmin S.Y. Xu et al. (2011)

••

Warping hamiltonian λ 3 3 ! H = !vF (!σ × k).ˆ z + (k+ + k− )σ z 2 ( L. Fu, 2009 )

λEF2 w(w + wmax )2 b= = 2(!vF )3 2(wmax − w)3

;

Experimentally : 0 ! b " 0.6

w = wmax

kmax − kmin , kmax + kmin

Regime of diffusive transport •• •• •• ••

Experimental regime : far from the Dirac point (good metal) λ 3 3 ! Hamiltonian : H = !vF (!σ × k).ˆ z + (k+ + k− )σ z + V (!r) 2 $V (!r)% = 0 $V (!r)V (r!" )% = γδ(!r − r!" ) Sample length # mean free path $e (weak disorder)

Semi classical approach, kf $e # 1 (perturbative approach) - Boltzmann equation - Diagrammatics

Boltzmann approach •• Density of states : f (!k) ! |V |!k%| |$ k Scattering probability : •• "

k!"

|$k!" |V |!k%| = g!k (θ) 2

e σ= h

γ

θ !k

!k

|$k!" |V |!k%|2 = g!k (θ)

θ k!"

Perturbative result 2!2 vF2

= g!k (θ) spinor overlap

θ

8

2

2

 /(b=0) 2

b

6 4

(1 + 8b2 − 58b4 + o(b4 ))

2 0.0

b4 0.2

0.4

0.6

0.8

1.0

b

Diagrammatic approach ••

Kubo formula : σαβ ∝ +

ΓD

!

j α GR j β G A !k ΓD (!q )

+

=

ΓD (!q )

!k − !q

••

Dyson equation :

"V (!r)# = 0 "V (!r)V (r!" )# = γδ(!r − r!" )

GR

=

+

+

+



=

+

+

$GR/A % = (E ± i!/2τe − H0 )−1

+ ...

+

+

+ ...

Diagrammatic approach ••

Kubo formula : σαβ ∝

! +

••

j α GR j β G A ΓD

Disorder induced coupling %GR GA &

−→ 0 (kF !e # 1)

Diagrammatic approach ••

σαβ ∝

Diffuson mode %GR GA &

!

j α GR j β G A ΓD

+

Anisotropy +

vF2 τtr vF2 τe −→ D= d 2

+...



b=0 +

ΓD

=

+

+

+

+...

4 modes 1 - 1 diffusive singlet D(b)q 2 τ − iωτ /! e e - 3 triplet, non diffusive

= −2evF σ x

tr = 2 e • b '= 0

jx = −evF (σ x + 2bk 3 cos 2θσ z ) ΓD

Non perturbative results •• •• ••

Non perturbative in warping Correction to Dirac physics Possible to probe experimentally

 /(b=0)

λEF2 b= 2(!vF )3

 /(b=0) 2

2

b

b

N.P

N.P

b

b4

4

E (eV) F

b Exp.

Exp.

Non perturbative results •• •• •• 1.0

2 Einstein relation σ = e ρD

Opposite effects Strong effect on diffusion constant w.r.t. Dirac physics (b)/(b=0)

D(b)/D(b=0) N.P

b2

0.8 0.6 0.4

0.0

0.2

0.4

0.6

0.8

1.0

b

b4

b Exp.

Outline ••

Topological Insulators surface states

••

Classical conductance

 /(b=0)

2

b

N.P

b4

••

Coherent transport

Exp.

!∆Σ "B#$ !∆Σ "B $ 0#$ 1.0

0.8

Bi 2 Te3

0.6

0.4 E=0.1 eV 0.2 E=0.2 eV E=0.3 eV !1.0

!0.5

0.0

EF (eV)

0.5

B 1.0 B0

Coherent transport ••

Phonons : nite coherence time  Mesoscopic physics : low T (

), small samples

Quantum interferences Diffuson Cooperon

••

Universal values : weak (anti)localization / UCF

Coherent transport : diagrammatics •• Interferences effects : 2 diffusive modes ••

Γ(d)

= × + ××

Γ(c)

=

×××

+

××××

+···

+

×

+

×

+···

Weak anti-localization −k$"

k$"

H

••

×

+

$k

$k

k$"

$k

+

=

C

$k

$k

$k

$k

−k$"

k$"

−k$"

$k

+ $k

−$k

k$"

−k$"

$k

$k

e2 %δσ& = π!

Conductance uctuations $ − $k, EF − Ω Q

$k

! ΓC (Ω, Q)

$ −K $ ", Q EF − Ω

HC k$"

$ − k$" , EF − Ω Q

$k − $ q , EF − Ω

$k

! ΓC (−Ω, Q)

ΓD (Ω, !q)

$ − K, $ Q EF − Ω

$ K

$" − $ q, K EF − Ω

HD k$"

$" K

ΓD

ΓD

HC

ΓD

ΓD

ΓC

ΓC

ΓC

ΓC

$" K

HD q , EF − Ω k$" − $

$ −$ K q, EF − Ω

ΓD (−Ω, −!q)

$ K

%δσ 2 & = 12

#

2

e h

$2

" 1 V

! Q

1 Q2 "

q !

1 q4

Same results as non-relativistic electrons with random spin-orbit coupling !

Anderson problem •• Coherent metal + weak disorder : Anderson problem •• Universality classes for transition (strong disorder) : universal metallic properties (weak disorder) •• ••

Time Reversal Symmetry

λ 3 3 $ (k+ + k− H = !v ($ σ × k).ˆ z + )σ z + V ($r) , F 2

T2 = -1

Symmetry T

P

C

0

A

0

0

0

AI

1

0

AII

−1

0

d−1 1

2

0

Z

0

Unitary

0

0

0

0

Orthogonal

0

0

Z2

Z2

Symplectic

Wigner - Dyson Classes

••

Symplectic class/AII crossover to Unitary/A (mag. eld) 2 / 1 diffusive modes Diffuson

Cooperon

Symplectic and unitary classes results ••

Diffuson

•• ••

Unitary class

Symplectic class, TRS Diffusive modes

Diffuson

Cooperon

Weak Anti Localization (WAL) " 1 e2 %δσ& = π! Q ! Q2 Conductance uctuations # 2 $2 " 1 1 e 2 %δσ & = 12 h V q! q 4

%δσ& = 0 2

%δσ & = 6

#

2

e h

$2

1 V

"

q !

1 q4

Universal results : specicity of Dirac in the crossovers

WAL crossover •• ••

Phase coherence length : Lφ = Result for Lφ ) L :

Lφ e2 ln( ) %δσ& = π! 'e

••

%

D(b)τφ

Function of b (or EF) !∆Σ "B#$ !∆Σ "B $ 0#$

Crossover :

1.0

! ! Bφ (b) = 4eD(b)τe 4eD(b)τφ & # $ # $' 2 1 Be 1 Bφ e + + %δσ(B)& = Ψ −Ψ 4π 2 ! 2 B 2 B Be (b) =

Function of b (or EF)

0.8

Bi 2 Te3

0.6

0.4 E=0.1 eV 0.2 E=0.2 eV E=0.3 eV

!1.0

!0.5

0.0

0.5

B 1.0 B0

In plane Zeeman magnetic eld •• ••

$ σ Extra term in the hamiltonian : gµB B.$

Effect in absence of hexagonal warping

3

2

1

0

!1

!2

!3

•• ••

!3

!2

!1

0

1

2

3

No change of the scattering probability Cooperon stays massless

1 D(b)Q2 τe − iωτe /!

No change in conductivity

In plane Zeeman magnetic eld Brillouin Different zones mag.fields 3

••

Effect in absence/presence of hexagonal warping

2

1

0

!1

!2

••

!3 !3

TRS broken, crossover to unitary class. Cooperon is no longer massless L %l

!2

!1

0

1

2

3

B e

1 D(b)Q2 τe − iωτe /! + m(b, B)

B=1T

2500 2000 1500

Magnetic length ( LB = D(b)τe /m(b, B)

Bi2Se3

1000

Bi2Te3

500

0.10

0.15

0.20

0.25

E " 0.30 F

Conclusions •• Hexagonal warping taken into account non-perturbatively

!∆Σ "B#$ !∆Σ "B $ 0#$ 1.0

/(b=0)

0.8

Bi 2 Te3

2

b

0.6

N.P

0.4 E=0.1 eV 0.2

b4

••

E F (eV)

E=0.2 eV E=0.3 eV !1.0

!0.5

0.0

0.5

Exp.

In-plane Zeeman magnetic eld effect Brillouin Different zones mag.fields

3

2

1

0

!1

!2

http://arxiv.org/abs/1205.5209

!3 !3

!2

!1

0

1

2

3

B 1.0 B0