

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

developerWorks : Linux - La page d'accueil du P:L:O:U:G

Aug 1, 2001 - C, python, and bash (although, technically, awk was created before both python and bash). Awk is one of those languages that, once learned, ...

 Télécharger le PDF

 62KB taille
 5 téléchargements
 266 vues

 commentaire

 Report

developerWorks : Linux : Common threads -- Awk by example, Part 1

IBM Home

Products

Consulting

Industries

News About IBM

Search

IBM : developerWorks : Linux library

Common threads: Awk by example, Part 1 An intro to the great language with the strange name Daniel Robbins President/CEO, Gentoo Technologies, Inc. December 2000 Awk is a very nice language with a very strange name. In this first article Contents: of a three-part series, Daniel Robbins will quickly get your awk In defense of awk programming skills up to speed. As the series progresses, more advanced The first awk topics will be covered, culminating with an advanced real-world awk Multiple fields application demo. External scripts In defense of awk The BEGIN and END In this series of articles, I'm going to turn you into a proficient awk coder. I'll admit, awk doesn't have a very pretty or particularly "hip" name, and the GNU blocks version of awk, called gawk, sounds downright weird. Those unfamiliar with Regular expressions and the language may hear "awk" and think of a mess of code so backwards and blocks antiquated that it's capable of driving even the most knowledgeable UNIX guru to the brink of insanity (causing him to repeatedly yelp "kill -9!" as he runs for Expressions and blocks Conditional statements coffee machine). Sure, awk doesn't have a great name. But it is a great language. Awk is geared Numeric variables toward text processing and report generation, yet features many well-designed Stringy variables features that allow for serious programming. And, unlike some languages, Lots of operators awk's syntax is familiar, and borrows some of the best parts of languages like Field separators C, python, and bash (although, technically, awk was created before both python and bash). Awk is one of those languages that, once learned, will become a key Number of fields part of your strategic coding arsenal. Record number Resources The first awk Let's go ahead and start playing around with awk to see how it works. At the About the author command line, enter the following command:

$ awk '{ print }' /etc/passwd You should see the contents of your /etc/passwd file appear before your eyes. Now, for an explanation of what awk did. When we called awk, we specified /etc/passwd as our input file. When we executed awk, it evaluated the print command for each line in /etc/passwd, in order. All output is sent to stdout, and we get a result identical to catting /etc/passwd. Now, for an explanation of the { print } code block. In awk, curly braces are used to group blocks of code together, similar to C. Inside our block of code, we have a single print command. In awk, when a print

http://www-106.ibm.com/developerworks/library/l-awk1.html (1 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

command appears by itself, the full contents of the current line are printed. Here is another awk example that does exactly the same thing:

$ awk '{ print $0 }' /etc/passwd In awk, the $0 variable represents the entire current line, so print and print $0 do exactly the same thing. If you'd like, you can create an awk program that will output data totally unrelated to the input data. Here's an example:

$ awk '{ print "" }' /etc/passwd Whenever you pass the "" string to the print command, it prints a blank line. If you test this script, you'll find that awk outputs one blank line for every line in your /etc/passwd file. Again, this is because awk executes your script for every line in the input file. Here's another example:

$ awk '{ print "hiya" }' /etc/passwd Running this script will fill your screen with hiya's. :) Multiple fields Awk is really good at handling text that has been broken into multiple logical fields, and allows you to effortlessly reference each individual field from inside your awk script. The following script will print out a list of all user accounts on your system:

$ awk -F":" '{ print $1 }' /etc/passwd Above, when we called awk, we use the -F option to specify ":" as the field separator. When awk processes the print $1 command, it will print out the first field that appears on each line in the input file. Here's another example:

$ awk -F":" '{ print $1 $3 }' /etc/passwd Here's an excerpt of the output from this script:

http://www-106.ibm.com/developerworks/library/l-awk1.html (2 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

halt7 operator11 root0 shutdown6 sync5 bin1etc. As you can see, awk prints out the first and third fields of the /etc/passwd file, which happen to be the username and uid fields respectively. Now, while the script did work, it's not perfect -- there aren't any spaces between the two output fields! If you're used to programming in bash or python, you may have expected the print $1 $3 command to insert a space between the two fields. However, when two strings appear next to each other in an awk program, awk concatenates them without adding an intermediate space. The following command will insert a space between both fields:

$ awk -F":" '{ print $1 " " $3 }' /etc/passwd When you call print this way, it'll concatenate $1, " ", and $3, creating readable output. Of course, we can also insert some text labels if needed:

$ awk -F":" '{ print "username: " $1 "\t\tuid:" $3" }' /etc/passwd This will cause the output to be:

username: username: username: username: username: username:etc.

halt operator root shutdown sync bin

uid:7 uid:11 uid:0 uid:6 uid:5 uid:1

External scripts Passing your scripts to awk as a command line argument can be very handy for small one-liners, but when it comes to complex, multi-line programs, you'll definitely want to compose your script in an external file. Awk can then be told to source this script file by passing it the -f option:

$ awk -f myscript.awk myfile.in Putting your scripts in their own text files also allows you to take advantage of additional awk features. For example, this multi-line script does the same thing as one of our earlier one-liners, printing out the first field of each line in /etc/passwd:

http://www-106.ibm.com/developerworks/library/l-awk1.html (3 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

BEGIN { FS=":" } { print $1 } The difference between these two methods has to do with how we set the field separator. In this script, the field separator is specified within the code itself (by setting the FS variable), while our previous example set FS by passing the -F":" option to awk on the command line. It's generally best to set the field separator inside the script itself, simply because it means you have one less command line argument to remember to type. We'll cover the FS variable in more detail later in this article. The BEGIN and END blocks Normally, awk executes each block of your script's code once for each input line. However, there are many programming situations where you may need to execute initialization code before awk begins processing the text from the input file. For such situations, awk allows you to define a BEGIN block. We used a BEGIN block in the previous example. Because the BEGIN block is evaluated before awk starts processing the input file, it's an excellent place to initialize the FS (field separator) variable, print a heading, or initialize other global variables that you'll reference later in the program. Awk also provides another special block, called the END block. Awk executes this block after all lines in the input file have been processed. Typically, the END block is used to perform final calculations or print summaries that should appear at the end of the output stream. Regular expressions and blocks Awk allows the use of regular expressions to selectively execute an individual block of code, depending on whether or not the regular expression matches the current line. Here's an example script that outputs only those lines that contain the character sequence foo:

/foo/ { print } Of course, you can use more complicated regular expressions. Here's a script that will print only lines that contain a floating point number:

/[0-9]+\.[0-9]*/ { print } Expressions and blocks There are many other ways to selectively execute a block of code. We can place any kind of boolean expression before a code block to control when a particular block is executed. Awk will execute a code block only if the preceding boolean expression evaluates to true. The following example script will output the third field of all lines that have a first field equal to fred. If the first field of the current line is not equal to fred, awk will continue processing the file and will not execute the print statement for the current line:

$1 == "fred" { print $3 } http://www-106.ibm.com/developerworks/library/l-awk1.html (4 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

Awk offers a full selection of comparison operators, including the usual "==", "", "=", and "!=". In addition, awk provides the "~" and "!~" operators, which mean "matches" and "does not match". They're used by specifying a variable on the left side of the operator, and a regular expression on the right side. Here's an example that will print only the third field on the line if the fifth field on the same line contains the character sequence root:

$5 ~ /root/ { print $3 } Conditional statements Awk also offers very nice C-like if statements. If you'd like, you could rewrite the previous script using an if statement:

{ if ($5 ~ /root/) { print $3 } } Both scripts function identically. In the first example, the boolean expression is placed outside the block, while in the second example, the block is executed for every input line, and we selectively perform the print command by using an if statement. Both methods are available, and you can choose the one that best meshes with the other parts of your script. Here's a more complicated example of an awk if statement. As you can see, even with complex, nested conditionals, if statements look identical to their C counterparts:

{ if ($1 == "foo") { if ($2 == "foo") { print "uno" } else { print "one" } } else if ($1 == "bar") { print "two" } else { print "three" } } Using if statements, we can also transform this code:

! /matchme/ { print $1 $3 $4 }

http://www-106.ibm.com/developerworks/library/l-awk1.html (5 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

to this:

{ if ($0 !~ /matchme/) { print $1 $3 $4 } } Both scripts will output only those lines that don't contain a matchme character sequence. Again, you can choose the method that works best for your code. They both do the same thing. Awk also allows the use of boolean operators "||" (for "logical or") and "&&"(for "logical and") to allow the creation of more complex boolean expressions:

($1 == "foo") && ($2 == "bar") { print } This example will print only those lines where field one equals foo and field two equals bar. Numeric variables! So far, we've either printed strings, the entire line, or specific fields. However, awk also allows us to perform both integer and floating point math. Using mathematical expressions, it's very easy to write a script that counts the number of blank lines in a file. Here's one that does just that:

BEGIN /^$/ END

{ x=0 } { x=x+1 } { print "I found " x " blank lines. :)" }

In the BEGIN block, we initialize our integer variable x to zero. Then, each time awk encounters a blank line, awk will execute the x=x+1 statement, incrementing x. After all the lines have been processed, the END block will execute, and awk will print out a final summary, specifying the number of blank lines it found. Stringy variables One of the neat things about awk variables is that they are "simple and stringy." I consider awk variables "stringy" because all awk variables are stored internally as strings. At the same time, awk variables are "simple" because you can perform mathematical operations on a variable, and as long as it contains a valid numeric string, awk automatically takes care of the string-to-number conversion steps. To see what I mean, check out this example:

x="1.01" # We just set x to contain the *string* "1.01" x=x+1 # We just added one to a *string* print x # Incidentally, these are comments :)

http://www-106.ibm.com/developerworks/library/l-awk1.html (6 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

Awk will output:

2.01 Interesting! Although we assigned the string value 1.01 to the variable x, we were still able to add one to it. We wouldn't be able to do this in bash or python. First of all, bash doesn't support floating point arithmetic. And, while bash has "stringy" variables, they aren't "simple"; to perform any mathematical operations, bash requires that we enclose our math in an ugly $() construct. If we were using python, we would have to explicitly convert our 1.01 string to a floating point value before performing any arithmetic on it. While this isn't difficult, it's still an additional step. With awk, it's all automatic, and that makes our code nice and clean. If we wanted to square and add one to the first field in each input line, we would use this script:

{ print ($1^2)+1 } If you do a little experimenting, you'll find that if a particular variable doesn't contain a valid number, awk will treat that variable as a numerical zero when it evaluates your mathematical expression. Lots of operators Another nice thing about awk is its full complement of mathematical operators. In addition to standard addition, subtraction, multiplication, and division, awk allows us to use the previously demonstrated exponent operator "^", the modulo (remainder) operator "%", and a bunch of other handy assignment operators borrowed from C. These include pre- and post-increment/decrement (i++, --foo), add/sub/mult/div assign operators (a+=3, b*=2, c/=2.2, d-=6.2). But that's not all -- we also get handy modulo/exponent assign ops as well (a^=2, b%=4). Field separators Awk has its own complement of special variables. Some of them allow you to fine-tune how awk functions, while others can be read to glean valuable information about the input. We've already touched on one of these special variables, FS. As mentioned earlier, this variable allows you to set the character sequence that awk expects to find between fields. When we were using /etc/passwd as input, FS was set to ":". While this did the trick, FS allows us even more flexibility. The FS value is not limited to a single character; it can also be set to a regular expression, specifying a character pattern of any length. If you're processing fields separated by one or more tabs, you'll want to set FS like so:

FS="\t+" Above, we use the special "+" regular expression character, which means "one or more of the previous character". If your fields are separated by whitespace (one or more spaces or tabs), you may be tempted to set FS to the following regular expression:

http://www-106.ibm.com/developerworks/library/l-awk1.html (7 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

FS="[[:space:]+]" While this assignment will do the trick, it's not necessary. Why? Because by default, FS is set to a single space character, which awk interprets to mean "one or more spaces or tabs." In this particular example, the default FS setting was exactly what you wanted in the first place! Complex regular expressions are no problem. Even if your records are separated by the word "foo," followed by three digits, the following regular expression will allow your data to be parsed properly:

FS="foo[0-9][0-9][0-9]" Number of fields The next two variables we're going to cover are not normally intended to be written to, but are normally read and used to gain useful information about the input. The first is the NF variable, also called the "number of fields" variable. Awk will automatically set this variable to the number of fields in the current record. You can use the NF variable to display only certain input lines:

NF == 3 { print "this particular record has three fields: " $0 } Of course, you can also use the NF variable in conditional statements, as follows:

{ if (NF > 2) { print $1 " " $2 ":" $3 } } Record number The record number (NR) is another handy variable. It will always contain the number of the current record (awk counts the first record as record number 1). Up until now, we've been dealing with input files that contain one record per line. For these situations, NR will also tell you the current line number. However, when we start to process multi-line records later in the series, this will no longer be the case, so be careful! NR can be used like the NF variable to print only certain lines of the input:

(NR < 10) || (NR > 100) { print "We are on record number 1-9 or 101+" } Another example:

http://www-106.ibm.com/developerworks/library/l-awk1.html (8 of 9) [1/8/2001 8:20:29 AM]

developerWorks : Linux : Common threads -- Awk by example, Part 1

{ #skip header if (NR > 10) { print "ok, now for the real information!" } } Awk provides additional variables that can be used for a variety of purposes. We'll cover more of these variables in later articles. We've come to the end of our initial exploration of awk. As the series continues, I'll demonstrate more advanced awk functionality, and we'll end the series with a real-world awk application. In the meantime, if you're eager to learn more, check out the resources listed below. Resources ● If you'd like a good old-fashioned book, O'Reilly's sed & awk, 2nd Edition is a wonderful choice. ●

Be sure to check out the comp.lang.awk FAQ. It also contains lots of additional awk links.

●

Patrick Hartigan's awk tutorial is packed with handy awk scripts.

●

Thompson's TAWK Compiler compiles awk scripts into fast binary executables. Versions are available for Windows, OS/2, DOS, and UNIX. The GNU Awk User's Guide is available for online reference.

●

About the author Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo Technologies, Inc., the creator of Gentoo Linux, an advanced Linux for the PC, and the Portage system, a next-generation ports system for Linux. He has also served as a contributing author for the Macmillan books Caldera OpenLinux Unleashed, SuSE Linux Unleashed, and Samba Unleashed. Daniel has been involved with computers in some fashion since the second grade, when he was first exposed to the Logo programming language as well as a potentially dangerous dose of Pac Man. This probably explains why he has since served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary, and his new baby daughter, Hadassah. You can reach Daniel at .

What do you think of this article? Killer! (5)

Good stuff (4)

So-so; not bad (3)

Needs work (2)

Comments?

Submit feedback

Privacy Legal

Contact

http://www-106.ibm.com/developerworks/library/l-awk1.html (9 of 9) [1/8/2001 8:20:29 AM]

Lame! (1)

des documents recommandant

[image: alt]

developerWorks: Linux - La page d'accueil du P:L:O:U:G

Owner, Thomas Wolfgang Burger Consulting. December ... Alternatively, devoting an entirely new computer to an OS you use only occasionally is not a realistic ...

[image: alt]

developerWorks : Linux - La page d'accueil du P:L:O:U:G

May 26, 2000 - HTML Editor; an animation GIF creation tool; a graphic tool for ... Because TopPage is a Windows application using many graphical user ...

[image: alt]

developerWorks : Linux - La page d'accueil du P:L:O:U:G

Time-based profiling, performance counter-based profiling, annotated call graph (ACG) of kernel space only ... Examples are: q sstat component-related and Java-related issues we are addressing that we believe will further improve the ...

[image: alt]

developerWorks: Linux : Tip: Dual-booting Linux - La page d'accueil

Apr 22, 2002 - the Linux command window where you can configure your system. 1. Scroll down until you ... to list the label you used during installation. Now save the file ... Application server and DB2) on the different partitions. Resources.

[image: alt]

developerWorks: Linux : Tip - La page d'accueil du P:L:O:U:G

Freelance author and consultant. October 2002. The GNU text utilities package is a flexible and powerful set of tools for automated text processing under Linux ...

[image: alt]

developerWorks: Linux | Unicode - La page d'accueil du P:L:O:U:G

Apr 9, 2001 - Owner, Thomas Wolfgang Burger Consulting Before you start using UTF-8 under Linux make sure the distribution has glibc 2.2 and XFree86 ...

[image: alt]

developerWorks: Linux : Embedded Linux applications: An overview

wrist watch, hand-held devices (PDAs and cell phones), Internet appliances, thin clients, firewalls ... featured Linux kernel requires about 1 MB of memory.

[image: alt]

developerWorks : Linux : Inline assembly for x86 in Linux - Oldlinux.org

usages, gives some basic inline assembly coding guidelines, and explains the instances of inline ... architecture-dependent functions or optimizing a code path pretty often. And you probably ... GCC, the GNU C Compiler for. Linux, uses AT&T ...

[image: alt]

developerWorks : Linux : Common threads -- Dynamic iptables firewalls

Apr 23, 2001 - Visit the home page for the netfilter team to find lots of excellent resources, including the iptables sources, and Rusty's excellent "unreliable ...

[image: alt]

Linux Dictionary - La page d'accueil du P:L:O:U:G

OSâˆ’directed configuration and power management on laptops, desktops, and projects, and can generate PDF, PostScript, HTML and pure text output. build client portfolios that provide meaningful, graphical analysis of Schwartz, O'

[image: alt]

linux complete - La page d'accueil du P:L:O:U:G

Library of Congress Catalog Card Number: 97-66202. 2000 99 98 97 The two or three characters that control history expansion and tokenization. (See.

[image: alt]

Mot daccueil du fondateur

[image: alt]

developerWorks: Linux | Open source projects : Sharing computers on

Mar 28, 2002 - In Part 1 of this pair of articles on sharing computers, I described my heterogeneous ... You will require a password to access your desktops.

[image: alt]

developerWorks: Linux : Packaging software with RPM, Part 3

Feb 26, 2002 - The GNU indent program reformats C code to any of a variety of formatting ... %clean rm -rf $RPM_BUILD_ROOT. %files. %defattr(-,root,root).

[image: alt]

developerWorks: Linux : Server clinic: PDF for the server

IBM home | Products & services | Support & downloads | My account ... month, Cameron introduces the ReportLab library for PDF management and programming. ... The source code for your first application can be as simple as this: ... Helvetica, you can,

[image: alt]

Mastering Linux debugging techniques - La page d'accueil du P:L:O:U:G

Mastering Linux debugging techniques Before you run a program or attach to an already running program, list the source code where you believe q Stack back trace for the current active task as well as for all other tasks (by process ID).

[image: alt]

Chaining up networks with Linux - La page d'accueil du P:L:O:U:G

installing and configuring ipchains, an open-source and free Linux firewall package that can handle speeds up to a The source (-s) and destination (-d) have the same format. "Securing Linux, Part 1," in LinuxWorld magazine, May 1999.

[image: alt]

Introduction to Linux - La page d'accueil du P:L:O:U:G

Sep 22, 1993 - admin section, and the man page from the programmer section. â€¢. The name of the command and a short description are given, which is used ...

[image: alt]

Create Debian Linux packages - La page d'accueil du P:L:O:U:G

Jul 14, 2003 - If you want to see what a package looks like for yourself, download a few ... to be able to install software using dpkg or APT (Advanced Packaging Tool). http://www-106.ibm.com/developerworks/library/l-debpkg.html (5 of 7) ...

[image: alt]

Boot Linux faster - La page d'accueil du P:L:O:U:G

Sep 17, 2003 - each runlevel? Service link names. Starting and stopping services ... traditional services framework. Dependencies between services (multi-user mode with graphics), since all the other runlevels are non-graphical. ... Going back t

[image: alt]

Linux+

it continues to provide the knowledge you need up to a proficiency level sufficient to pass Book contents as a PDF file The entire book is available as a fully searchable Another resource you may want to consult is your hardware's manufac

[image: alt]

Linux

Do something sensible when Samba crashes: mail the admin a backtrace panic action = /usr/share/samba/panic-action %d. ####### Authentication #######.

[image: alt]

Windows-to-Linux roadmap: Part 5. Linux logging - La page d'accueil

November 11, 2003 ... example, there may be logs associated with running a mail server, resource sharing, automatic ... Any text tool can be used to work with log files. You can also sign up to receive a free Linux Software Evaluation Kit, ...

[image: alt]

Linux

Not yet versioned: It is still a work in progress. Just download it and put it in your /etc/init.d/ directory after updating it to fit you needs. On oggenc and lame allow us to specify some extra attributs for our songs, like its title

×
Report developerWorks : Linux - La page d'accueil du P:L:O:U:G

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

