

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

developerWorks : Linux - La page d'accueil du P:L:O:U:G

Time-based profiling, performance counter-based profiling, annotated call graph (ACG) of kernel space only ... Examples are: q sstat component-related and Java-related issues we are addressing that we believe will further improve the ...

 Télécharger le PDF

 151KB taille
 22 téléchargements
 254 vues

 commentaire

 Report

All of dW

Advanced search IBM home | Products & services | Support & downloads | My account IBM developerWorks : Linux : Linux articles Improving Linux kernel performance and scalability Making way for Linux in the enterprise

Contents: Analysis methodology

Sandra K. Johnson (), IBM Linux Technology Center William H. Hartner (), IBM Linux Technology Center William C. Brantley (), Advanced Micro Devices

Hardware and software Run rules Setting targets

January 2003 The first step in improving Linux performance is quantifying it. But how exactly do you quantify performance for Linux or for comparable systems? In this article, members of the IBM Linux Technology Center share their expertise as they describe how they ran several benchmark tests on the Linux 2.4 and 2.5 kernels late last year.

Tuning, measurement, and analysis Exit strategy Benchmarks Benchmark descriptions

The Linux operating system is one of the most successful open source projects to date. Linux exhibits high reliability as a Web server operating system, and it has significant market share in this market. Web servers are typically low-end to midrange systems with up to 4-way symmetric multiple processors (SMP); enterprise-level systems have more complex requirements, such as larger processor counts and I/O configurations and significant memory and bandwidth requirements. In order for Linux to be enterprise-ready and commercially viable in the SMP market, its SMP scalability, disk and network I/O performance, scheduler, and virtual memory manager must be improved relative to commercial UNIX systems.

Benchmark results

actively participates in the LSE effort. In addition, their objective is to make Linux better by improving Linux kernel performance with special emphasis on SMP scalability.

Subscribe to the developerWorks newsletter

This article describes the strategy and methodology used by the team for measuring, analyzing, and improving the performance and scalability of the Linux kernel, focusing on platform-independent issues. A suite of benchmarks is used to accomplish this task. The benchmarks provide coverage for a diverse set of workloads, including Web serving, database, and file serving. In addition, we show the various components of the kernel (disk I/O subsystem, for example) that are stressed by each benchmark.

Also in the Linux zone: Tutorials

Summary Resources About the authors Rate this article

Related content: Hyper-Threading speeds The Linux Scalability Effort (LSE) (see Resources for a link) is an open source project that addresses Linux these Linux kernel issues for enterprise class machines, with 8-way scalability and beyond. Open source in the biosciences The IBM Linux Technology Center's (LTC) Linux Performance Team (see Resources for a link)

Tools and products Code and components Articles

Analysis methodology Here we discuss the analysis methodology we used to quantify Linux performance for SMP scalability. If you prefer, you can skip ahead to the Benchmark results section. Our strategy for improving Linux performance and scalability includes running several industry accepted and component-level benchmarks, selecting the appropriate hardware and software, developing benchmark run rules, setting performance and scalability targets, and measuring, analyzing and improving performance and scalability. These processes are detailed in this section. Performance is defined as raw throughput on a uniprocessor (UP) or SMP. We distinguish between SMP scalability (CPUs) and resource scalability (number of network connections, for example). Hardware and software The architecture used for the majority of this work is IA-32 (in other words, x86), from one to eight processors. We also study the issues associated with future use of non-uniform memory access (NUMA) IA-32 and NUMA IA-64 architectures. The selection of hardware typically aligns with the selection of the benchmark and the associated workload. The selection of software aligns with IBM's Linux middleware strategy and/or open source middleware. For example:

●

●

●

●

Database We use a query database benchmark, and the hardware is an 8-way SMP system with a large disk configuration. IBM DB2 for Linux is the database software used, and the SCSI controllers are IBM ServeRAID 4H. The database is targeted for 8way SMP. SMB file serving The benchmark is NetBench and the hardware is a 4-way SMP system with as many as 48 clients driving the SMP server. The middleware is Samba (open source). SMB file serving is targeted for 4-way SMP. Web serving The benchmark is SPECweb99, and the hardware is an 8-way with a large memory configuration and as many as 32 clients. The benchmarking was conducted for research purposes only and was non-compliant (more on this in the Benchmarks section). The Web server is Apache, which is the basis for the IBM HTTP Server. We chose an 8-way in order to investigate scalability, and we chose Apache because it enables the measurement and analysis of next generation posix threads (NGPT) (see Resources). In addition, it is open source and the most popular Web server. Linux kernel version The level of the Linux kernel.org kernel (2.2.x, 2.4.x, or 2.5.x) used is benchmark dependent; this is discussed further in the Benchmarks section. The Linux distribution selected is Red Hat 7.1 or 7.2 in order to simplify our administration. Our focus is kernel performance, not the performance of the distribution: we replaced the Red Hat kernel with one from kernel.org along with the patches we evaluated.

Run rules During benchmark setup, we developed run rules to detail how the benchmark is installed, configured, and run, and how results are to be interpreted. The run rules serve several purposes: ● ●

● ●

Define the metric that will be used to measure benchmark performance and scalability (for example, messages/sec). Ensure that the benchmark results are suitable for measuring the performance and scalability of the workload and kernel components. Provide a documented set of instructions that will allow others to repeat the performance tests. Define the set of data that is collected so that performance and scalability of the System Under Test (SUT) can be analyzed to determine where bottlenecks exist.

Setting targets Performance and scalability targets for a benchmark are associated with a specific SUT (hardware and software configuration). Setting performance and scalability targets requires the following: ●

●

●

Baseline measurements to determine the performance of the benchmark on the baseline kernel version. Baseline scalability is then calculated. Initial performance analysis to determine a promising direction for performance gains (for example, a profile indicating the scheduler is very busy might suggest trying an O(1) scheduler). Comparison of baseline results with similar published results (for example, find SPECweb99 publications on the same Web server on a similar 8-way from spec.org).

If external published results are not available, we attempt to use internal results. We also attempt to compare to other operating systems. Given the competitive data and our baseline, we select a performance target for UP and SMP machines. Finally, a target may be predicated on getting a change in the application. For example, if we know that the way the application does asynchronous I/O is inefficient, then we may publish the performance target assuming the I/O method will be changed. Tuning, measurement, and analysis Before any measurements are made, both the hardware and software configurations are tuned. Tuning is an iterative cycle of tuning and measuring. It involves measuring components of the system such as CPU utilization and memory usage, and possibly adjusting system hardware parameters, system resource parameters, and middleware parameters. Tuning is one of the first steps of performance analysis. Without tuning, scaling results may be misleading; that is, they may not indicate kernel limitations but rather some other issue. The benchmark runs are made according to the run rules so that both performance and scalability can be measured in terms of the defined performance metric. When calculating SMP scalability for a given machine, we chose between computing this metric based upon the performance of a UP kernel or computing it upon the performance of an SMP kernel, with the number of processors set to 1 (1P). We decided to compute SMP scalability using UP measurements to more accurately reflect the SMP kernel performance improvements.

A baseline measurement is made using the previously determined version of the Linux kernel. For most benchmarks, both UP and SMP baseline measurements are made. For a few benchmarks, only the 8-way performance is measured since collecting UP performance information is time prohibitive. Most other benchmarks measure the amount of work completed in a specific time period, which takes no longer to measure on a UP than on an 8-way. The first step required to analyze the performance and scalability of the SUT (System Under Test) is to understand the benchmark and the workload tested. Initial performance analysis is made against a tuned system. Sometimes analysis uncovers additional modifications to tuning parameters. Analysis of the performance and scalability of the SUT requires a set of performance tools. Our strategy is to use Open Source community (OSC) tools whenever possible. This allows us to post analysis data to the OSC in order to illustrate performance and scalability bottlenecks. It also allows those in the OSC to replicate our results with the tool or to understand the results after experimenting with the tool on another application. If ad hoc performance tools are developed to gain a better understanding of a specific performance bottleneck, then the ad hoc performance tool is generally shared with the OSC. Ad hoc performance tools are usually simple tools that instrument a specific component of the Linux kernel. The performance tools we used include: ●

●

●

●

/proc file system meminfo, slabinfo, interrupts, network stats, I/O stats, etc. SGI's lockmeter From SMP lock analysis SGI's kernel profiler (kernprof) Time-based profiling, performance counter-based profiling, annotated call graph (ACG) of kernel space only IBM Trace Facility Single step (mtrace) and both time-based and performance counter-based profiling for both user and system space

Ad hoc performance tools are developed to further understand a specific aspect of the system. Examples are: ●

●

●

●

sstat Collects scheduler statistics schedret Determines which kernel functions are blocking for investigation of idle time acgparse Post-processes kernprof ACG copy in/out instrumentation Determines alignment of buffers, size of copy, and CPU utilization of copy in/out algorithm

Performance analysis data is then used to identify performance and scalability bottlenecks. A broad understanding of the SUT and a more specific understanding of certain Linux kernel components that are being stressed by the benchmark are required, in order to understand where the performance bottlenecks exist. There must also be an understanding of the Linux kernel source code that is the cause of the bottleneck. In addition, we work very closely with the LTC Linux kernel development teams and the OSC (Open Source community) so that a patch can be developed to fix the bottleneck. Exit strategy An evaluation of the Linux kernel performance may require several cycles of running the benchmarks, conducting an analysis of the results to identify performance and scalability bottlenecks, addressing any bottlenecks by integrating patches into the Linux kernel and running the benchmark again. The patches can be obtained by finding existing patches in the OSC or by developing new patches, as a performance team member, in close collaboration with the members of the Linux kernel development team or OSC). There is a set of criteria for determining when Linux is "good enough" and we end this process. First, if we have met our targets and we do not have any outstanding Linux kernel issues to address for the specific benchmark that would significantly improve its performance, we assert that Linux is "good enough" and move on to other issues. Second, if we go through several cycles of performance analysis and still have outstanding bottlenecks, then we consider the tradeoffs between the development costs of continuing the process and the benefits of any additional performance gains. If the development costs are too high, relative to any potential performance improvements, we discontinue our analysis and articulate the rationale appropriately. In both cases, we then review all of the additional outstanding Linux kernel-related issues we want to address, make an assessment of appropriate benchmarks that may be used to address these kernel component issues, examine any data we may have on the issue, and make a decision to conduct an analysis of the kernel component (or collection of components) based upon this collective information.

Benchmarks This section includes a description of the bottlenecks used and associated kernel components stressed by the benchmarks used in our suite. In addition, performance results and analysis is included for some of the benchmarks used by the Linux performance team. Table 1. Linux kernel performance benchmarks Linux kernel component

Database query VolanoMark SPECweb99 Apache2

Scheduler

X

Disk I/O

X

Block I/O

X

Raw, Direct & Async I/O

X

X

NetBench Netperf LMBench TioBench IOZone X X

Filesystem (ext2 & journaling)

X

X

X

TCP/IP

X

X

X

X

Ethernet driver

X

X

X

X

Signals

X

X

X

X

Pipes

X

Sendfile

X

pThreads

X

Virtual memory SMP scalability

X

X

X

X

X

X

X

X

X

X X

X

Benchmark descriptions The benchmarks used are selected based on a number of criteria: industry benchmarks that are reliable indicators of a complex workload, and component-level benchmarks that indicate specific kernel performance problems. Industry benchmarks are generally accepted by the industry to measure performance and scalability of a specific workload. These benchmarks often require a complex or expensive setup that is not available to most of the OSC (Open Source community). These complex setups are one of our contributions to the OSC. Examples include: ●

●

●

●

SPECweb99 Representative of Web-serving performance SPECsfs Representative of NFS performance Database query Representative of database-query performance NetBench Representative of SMB file-serving performance

Component-level benchmarks measure performance and scalability of specific Linux kernel components that are deemed critical to a wide spectrum of workloads. Examples include: ●

●

●

Netperf3 Measures performance of network stack, including TCP, IP, and network device drivers VolanoMark Measures performance of scheduler, signals, TCP send/receive, loopback Block I/O Test Measures performance of VFS, raw and direct I/O, block device layer, SCSI layer, low-level SCSI/fibre device driver

Some benchmarks are commonly used by the OSC. They are preferred because the OSC already accepts the importance of the benchmark. Thus, it is easier to convince the OSC of performance and scalability bottlenecks illuminated by the benchmark. In addition, there are generally no licensing issues that prevent us from publishing raw data. The OSC can run these benchmarks because they are often simple to set up, and the hardware required is minimal. On the other hand, they often do not meet our

requirements for enterprise systems. Examples include: ●

●

●

●

LMBench Used to measure performance of the Linux APIs IOZone Used to measure native file system throughput DBench Used to measure the file system component of NetBench SMB Torture Used to measure SMB file-serving performance

There are many benchmark options available for our targeted workloads. We chose the ones listed above because they are best suited for our mission, given our resources. There are some important benchmarks we chose not to utilize. In addition, we have chosen not to run some benchmarks that are already under study by other performance teams within IBM (for example, the IBM Solution Technologies System Performance Team has found that SPECjbb on Linux is "good enough"). Presented in Table 1 are the benchmarks currently used by the Linux performance team and the targeted kernel component. Benchmark results Presented are descriptions of three selected benchmarks used in our suite to quantify Linux kernel performance: database query, VolanoMark, and SPECweb99. For all three benchmarks, we used 8-way machines, as detailed in the figures presenting the benchmark results. Figure 1. Database query benchmark results

Figure 1 shows the database query benchmark results. Also included is a description of the hardware and software configurations used. The figure graphically illustrates the progress we have made in achieving our target. Some of the issues we have addressed have resulted in improvements that include adding bounce buffer avoidance, ips, io_request_lock, readv, kiobuf and O(1) scheduler kernel patches, as well as several DB2 optimizations. The VolanoMark benchmark (see Resources) creates 10 chat rooms of 20 clients. Each room echoes the messages from one client to the other 19 clients in the room. This benchmark, not yet an open source benchmark, consists of the VolanoChat server and a second program that simulates the clients in the chat room. It is used to measure the raw server performance and network scalability performance. VolanoMark can be run in two modes: loopback and network. The loopback mode tests the raw server performance, and the network mode tests the network scalability performance. VolanoMark uses two parameters to control the size and number of chat rooms. The VolanoMark benchmark creates client connections in groups of 20 and measures how long it takes for the server to take turns broadcasting all of the clients' messages to the group. At the end of the loopback test, it reports a score as the average number of messages transferred per second. In the network mode, the metric is the number of connections between the clients and the server. The Linux kernel components stressed with this benchmark include the scheduler, signals, and TCP/IP. Figure 2. VolanoMark benchmark results; loopback mode

Presented in Figure 2 are the VolanoMark benchmark results for loopback mode. Also included is a description of the hardware and software configurations used and our target for this benchmark. We have established close collaboration with the members of the Linux kernel development team on moving forward to achieve this target. Some of the issues we have addressed that have resulted in improvements include adding O(1) scheduler, SMP scalable timer, tunable priority preemption and soft affinity kernel patches. As illustrated, we have exceeded our target for this benchmark; however, there are some outstanding Linux kernel component-related and Java-related issues we are addressing that we believe will further improve the performance of this benchmark. Please note that the SPECweb99 benchmark work was conducted for research purposes only and was non-compliant, with the following deviations from the rules: 1. It was run on hardware that does not meet the SPEC availability-to-the public criteria. The machine was an engineering sample. 2. access_log wasn't kept for full accounting. It was written, but deleted every 200 seconds. This benchmark presents a demanding workload to a Web server. This workload requests 70% static pages and 30% simple dynamic pages. Sizes of the Web pages range from 102 to 921,000 bytes. The dynamic content models GIF advertisement rotation. There is no SSL content. SPECweb99 is relevant because Web serving, especially with Apache, is one of the most common uses of Linux servers. Apache is rich in functionality and is not designed for high performance. However, we chose Apache as the Web server for this benchmark because it currently hosts more Web sites than any other Web server on the Internet. SPECweb99 is the accepted standard benchmark for Web serving. SPECweb99 stresses the following kernel components: scheduler, TCP/IP, various threading models, sendfile, zero copy and network drivers. Figure 3. SPECweb99 benchmark results using the Apache Web server

Presented in Figure 3 are our results for SPECweb99. Also included is a description of the hardware and software configurations used and our benchmark target. We have a close collaboration with the Linux kernel development team and the IBM Apache team as we make progress on the performance of this benchmark. Some of the issues we have addressed that have resulted in the improvements shown include adding O(1) and read copy update (RCU) dcache kernel patches and adding a new dynamic API

mod_specweb module to Apache. As shown in Figure 3, we have exceeded our target on this benchmark; however, there are several outstanding Linux kernel component-related issues we are addressing that we believe will significantly improve the performance of this benchmark. Summary Linux has enjoyed great popularity, specifically with low-end and midrange systems. In fact, Linux is well regarded as a stable, highly-reliable operating system to use for Web servers for these machines. However, high-end, enterprise level systems have access to gigabytes, petabytes, and exabytes of data. These systems require a different set of applications and solutions with high memory and bandwidth requirements, in addition to larger numbers of processors (see Resources for the developerWorks article, "Open source in the biosciences", which discusses this type of application). This type of system application introduces a unique set of issues that may be orders of magnitude more complex than those present in smaller installations. In order for Linux to be competitive for the enterprise market, its performance and scalability must improve. Our experience thus far indicates that the performance of the Linux kernel can be improved significantly. We are proud to contribute to this goal by working within the open source community to quantify Linux kernel performance, and to develop patches to address degradation issues to make Linux better, and to make it enterprise ready. ACKNOWLEDGMENTS: We would like to thank Kaivalya Dixit, Dustin Fredrickson, Partha Narayanan, Troy Wilson, Peter Wong, and the LTC Linux kernel development team for their input in preparing this article. Resources ●

You'll find more information at the Linux Scalability Effort Web site.

●

Visit the pages of the Linux Technology Center Linux Kernel Performance team.

●

Take a look at IBM's Next Generation POSIX threading project site.

●

Learn about Kernel Spinlock Metering for Linux and about Kernprof (Kernel Profiling) from SGI.

●

Visit the Transaction Processing Council pages.

●

Learn more about the VolanoMark benchmark.

●

Find information about the SPECweb99 benchmark and about the latest SPECweb99 benchmark results at spec.org.

●

●

Also on developerWorks, read: ❍ "Hyper-Threading speeds Linux" (developerWorks, January 2003) ❍ "Open source in the biosciences" (developerWorks, November 2002) Find more resources for Linux developers in the developerWorks Linux zone.

About the authors Sandra K. Johnson is Manager, Linux performance at the IBM Linux Technology Center in Austin, Texas. She has over 14 years of experience in her broad areas of interest, including the design and performance evaluation of memory systems, cache coherence protocols, parallel I/O, parallel file systems, Java server performance, application server/database integration, and Linux performance. She is a member of the IBM Academy of Technology. Sandra can be reached at . Bill Hartner is the technical lead for the IBM Linux Technology Center Performance Team. Bill has worked in operating systems performance for about 10 years and on Linux performance for about 4 years. Bill can be reached at . Bill Brantley has been involved in UNIX performance since 1985 while at the IBM T. J. Watson Research Center in Yorktown Heights, NY, and then at IBM in Austin, TX. For the last 3 years he has been focused on Linux performance. Currently he is working on x86-64 Linux performance at Advanced Micro Devices. He can be reached at .

What do you think of this document? Killer! (5)

Good stuff (4)

So-so; not bad (3)

Comments?

Submit feedback

IBM developerWorks : Linux : Linux articles About IBM | Privacy | Legal | Contact

Needs work (2)

Lame! (1)

des documents recommandant

[image: alt]

developerWorks: Linux - La page d'accueil du P:L:O:U:G

Owner, Thomas Wolfgang Burger Consulting. December ... Alternatively, devoting an entirely new computer to an OS you use only occasionally is not a realistic ...

[image: alt]

developerWorks : Linux - La page d'accueil du P:L:O:U:G

Aug 1, 2001 - C, python, and bash (although, technically, awk was created before both python and bash). Awk is one of those languages that, once learned, ...

[image: alt]

developerWorks : Linux - La page d'accueil du P:L:O:U:G

May 26, 2000 - HTML Editor; an animation GIF creation tool; a graphic tool for ... Because TopPage is a Windows application using many graphical user ...

[image: alt]

developerWorks: Linux : Tip: Dual-booting Linux - La page d'accueil

Apr 22, 2002 - the Linux command window where you can configure your system. 1. Scroll down until you ... to list the label you used during installation. Now save the file ... Application server and DB2) on the different partitions. Resources.

[image: alt]

developerWorks: Linux : Tip - La page d'accueil du P:L:O:U:G

Freelance author and consultant. October 2002. The GNU text utilities package is a flexible and powerful set of tools for automated text processing under Linux ...

[image: alt]

developerWorks: Linux | Unicode - La page d'accueil du P:L:O:U:G

Apr 9, 2001 - Owner, Thomas Wolfgang Burger Consulting Before you start using UTF-8 under Linux make sure the distribution has glibc 2.2 and XFree86 ...

[image: alt]

developerWorks: Linux : Embedded Linux applications: An overview

wrist watch, hand-held devices (PDAs and cell phones), Internet appliances, thin clients, firewalls ... featured Linux kernel requires about 1 MB of memory.

[image: alt]

developerWorks : Linux : Inline assembly for x86 in Linux - Oldlinux.org

usages, gives some basic inline assembly coding guidelines, and explains the instances of inline ... architecture-dependent functions or optimizing a code path pretty often. And you probably ... GCC, the GNU C Compiler for. Linux, uses AT&T ...

[image: alt]

developerWorks : Linux : Common threads -- Dynamic iptables firewalls

Apr 23, 2001 - Visit the home page for the netfilter team to find lots of excellent resources, including the iptables sources, and Rusty's excellent "unreliable ...

[image: alt]

Linux Dictionary - La page d'accueil du P:L:O:U:G

OSâˆ’directed configuration and power management on laptops, desktops, and projects, and can generate PDF, PostScript, HTML and pure text output. build client portfolios that provide meaningful, graphical analysis of Schwartz, O'

[image: alt]

linux complete - La page d'accueil du P:L:O:U:G

Library of Congress Catalog Card Number: 97-66202. 2000 99 98 97 The two or three characters that control history expansion and tokenization. (See.

[image: alt]

Mot daccueil du fondateur

[image: alt]

developerWorks: Linux | Open source projects : Sharing computers on

Mar 28, 2002 - In Part 1 of this pair of articles on sharing computers, I described my heterogeneous ... You will require a password to access your desktops.

[image: alt]

developerWorks: Linux : Packaging software with RPM, Part 3

Feb 26, 2002 - The GNU indent program reformats C code to any of a variety of formatting ... %clean rm -rf $RPM_BUILD_ROOT. %files. %defattr(-,root,root).

[image: alt]

developerWorks: Linux : Server clinic: PDF for the server

IBM home | Products & services | Support & downloads | My account ... month, Cameron introduces the ReportLab library for PDF management and programming. ... The source code for your first application can be as simple as this: ... Helvetica, you can,

[image: alt]

Mastering Linux debugging techniques - La page d'accueil du P:L:O:U:G

Mastering Linux debugging techniques Before you run a program or attach to an already running program, list the source code where you believe q Stack back trace for the current active task as well as for all other tasks (by process ID).

[image: alt]

Chaining up networks with Linux - La page d'accueil du P:L:O:U:G

installing and configuring ipchains, an open-source and free Linux firewall package that can handle speeds up to a The source (-s) and destination (-d) have the same format. "Securing Linux, Part 1," in LinuxWorld magazine, May 1999.

[image: alt]

Introduction to Linux - La page d'accueil du P:L:O:U:G

Sep 22, 1993 - admin section, and the man page from the programmer section. â€¢. The name of the command and a short description are given, which is used ...

[image: alt]

Create Debian Linux packages - La page d'accueil du P:L:O:U:G

Jul 14, 2003 - If you want to see what a package looks like for yourself, download a few ... to be able to install software using dpkg or APT (Advanced Packaging Tool). http://www-106.ibm.com/developerworks/library/l-debpkg.html (5 of 7) ...

[image: alt]

Boot Linux faster - La page d'accueil du P:L:O:U:G

Sep 17, 2003 - each runlevel? Service link names. Starting and stopping services ... traditional services framework. Dependencies between services (multi-user mode with graphics), since all the other runlevels are non-graphical. ... Going back t

[image: alt]

Linux+

it continues to provide the knowledge you need up to a proficiency level sufficient to pass Book contents as a PDF file The entire book is available as a fully searchable Another resource you may want to consult is your hardware's manufac

[image: alt]

Linux

Do something sensible when Samba crashes: mail the admin a backtrace panic action = /usr/share/samba/panic-action %d. ####### Authentication #######.

[image: alt]

Windows-to-Linux roadmap: Part 5. Linux logging - La page d'accueil

November 11, 2003 ... example, there may be logs associated with running a mail server, resource sharing, automatic ... Any text tool can be used to work with log files. You can also sign up to receive a free Linux Software Evaluation Kit, ...

[image: alt]

Linux

Not yet versioned: It is still a work in progress. Just download it and put it in your /etc/init.d/ directory after updating it to fit you needs. On oggenc and lame allow us to specify some extra attributs for our songs, like its title

×
Report developerWorks : Linux - La page d'accueil du P:L:O:U:G

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

