Defects localization applied to the inverse medium ... - Yann Grisel

Jun 3, 2013 - x ∈ R d , θ ∈ Γe. Helmholtz equation for inhomogeneous media in an unbounded domain:... ∆us n + k2n(x)us n = −k2(n(x) − 1)ui , x ∈ R.
2MB taille 0 téléchargements 259 vues
Defects localization applied to the inverse medium problem Waves 2013

Yann Grisel1,2 , P.A. Mazet1,2 , V. Mouysset1 , J.P Raymond2

2

1 ONERA Toulouse, DTIM, M2SN, Universit´ e Toulouse III, Paul-Sabatier.

June 3, 2013

Yann Grisel

Defects localization applied to the inverse medium problem

1/ 25

Physical background

Plane wave sources

Object

Far-field measurements

Figure: Acoustic scattering: plane wave incidence directions and far-field measurements.

Goals

Yann Grisel

1

Completely characterize the non-homogeneous medium through an iterative numerical method

2

Focus on the (most) useful parameters

3

Build a fast numerical method to locate defects in some reference refraction index.

Defects localization applied to the inverse medium problem

2/ 25

Mathematical setting

Plane-wave sources

8

^ Γ x m Un

Ui θ

Far-field measurements

Object

Γe

Figure: Inhomogeneous medium (O) studied at a fixed frequency

Inhomogeneous medium: n(x), with n(x) = 1 outside O (bounded) ~ x) := e ikx·θ~ , x ∈ Rd , θ~ ∈ Γe Plane wave sources: u i (θ, Helmholtz equation for inhomogeneous media in an unbounded domain:  s 2 s 2 i d  ∆un + k n(x)un = −k (n(x) − 1)u , x ∈ R ,  lim |x| |x|→∞

d−1 2

(∂|x| uns − ikuns ) = 0.

Far-field pattern:  ∞ ~ ~ x) = e ik|x| uns (θ, x) + o d−1 un (θ, ~ |x| 2

1 d−1 |x| 2



~ ~x ) ∈ (Γe × Γm ). , x ∈ Rd , (θ,

Problem: extract some information about the actual medium’s index n? ∈ L∞ (O) from (noisy) far-field measurements uε ∈ C ∞ (Γe , Γm ) Difficulties: non-linear and ill-posed inverse problem Yann Grisel

Defects localization applied to the inverse medium problem

3/ 25

Full reconstruction of the unknown index n? Index to far-field mapping: F : n 7→ un∞ Usual Tykhonov regularized cost-functional: J(n) := kF(n) − uε k2L2 (Γe ×Γm ) + λ kn − n0 k2L2 (O) . P Piece-wise constant indices: O = ∪Zi , i = 1 . . . N, n(x) = ηi 1Zi (x) Derivative of the far-field mapping: Z ~ ~x ) 7→ ~ x) un (−~x , x) dn(x) dx, θ~ ∈ Γe , ~x ∈ Γm . DF(n) dn : (θ, k 2 un (θ, x∈O

Gauss-Newton (G.-N.) algorithm for the regularized cost-functional: 1 2 3

Input: n0 ∈ L2 (O) p ← 0; repeat Compute np+1 by solving the linear system DF(np )? DF(np ) +

4

Yann Grisel

λ  id (np+1 − n0 ) = 2  −DF(np )? F(np ) − uε − DF(np )(np − n0 ) ,

p ← p + 1; until knp − np−1 k2 /(1 + knp−1 k2 ) < ; Output: npEnd Defects localization applied to the inverse medium problem

4/ 25

Final relative error (e p En d) in %

Full reconstruction of the unknown index n?

11 10 9 8 7 6 1 10

Figure: N 7→ epEnd :=

Yann Grisel

2

3

10 10 Numb er of parameters (N )

kn? −npEnd k kn? k

(percentage)

Defects localization applied to the inverse medium problem

5/ 25

1 - Localisation of defects

Yann Grisel

Defects localization applied to the inverse medium problem

6/ 25

A sampling approach U

n

Ui

O



U

8

O

8

Ui

n*



Figure: Initial and perturbed sates of measured object

Green’s function for an inhomogeneous medium:  ∆ + k 2 n(x) Gn (z, x) = −δ(z − x). Superposition of Green’s function far-fields: C : L2 (Ω) → L2 (Γm ) Z C (h)(~x ) := Gn∞ (z, ~x )h(z). z∈Ω

Proposition For each x ∈ R3 , we have x ∈ Ω ⇐⇒ Gn∞ (x, ·) ∈ R (C ) . Yann Grisel

Defects localization applied to the inverse medium problem

7/ 25

The factorization method Z Far-field operator: Fn (g )(~x ) := ~ e θ∈Γ

g ∈ L2 (Γe ) Sum of plane waves



u i ∈ L2 (O)

~ ~x )g (θ), ~ un∞ (θ, Fn

~x ∈ Γm .

/ un∞ ∈ L2 (Γm ) O Far field

Hn Helmholtz

/ un ∈ L2 (O)

Figure: Factorization of the far field operator

Factorization of the far-field subtraction: Z   ~ ~x )g (θ) ~ Fn? − Fn (g )(~x ) = un∞? − un∞ (θ, ~ e θ∈Γ Z Z  ~ z)g (θ) ~ = Gn∞ (z, ~x )k 2 n? − n (z)un? (θ, ~ θ∈Γe z∈Ω Z Z  ~ z)g (θ) ~ = Gn∞ (z, ~x )k 2 n? − n (z)Hn? Hn−1 un (θ, ~ e z∈Ω θ∈Γ Z Z  ~ (θ) ~ = Gn∞ (z, ~x )k 2 n? − n (z)Hn? Hn−1 Gn∞ (z, −θ)g Yann Grisel

z∈Ω

Defects localization applied to the inverse medium problem

~ e θ∈Γ

8/ 25

The factorization method Scattering operator: S := id + 2ik |γ|2 Fn . Proposition If Γe = Γm = S d−1 , n(x) ∈ R, n? (x) ∈ R, then   ~ = S ? Gn∞ (z, ·) (θ), ~ Gn∞ (z, −θ)

θ~ ∈ S d−1

Factorization of the far-field subtraction (continued): Z Z   Fn? − Fn (g )(~x ) = Gn∞ (z, ~x )k 2 n? − n (z)Hn? Hn−1

~ d−1 θ∈S

z∈Ω

~ (θ) ~ Gn∞ (z, −θ)g

= CAC ? S(g )(~x ). =⇒ (Fn? − Fn )S ? = CAC ? .     F# transform: F# := Re (Fn? − Fn )S ? + Im (Fn? − Fn )S ? 

|A| := (A? A)1/2 ,

Re A := (A + A? )/2,

Im A := (A − A? )/2i



Proposition (Kirsch, . . . , Lechleiter) F# = CA# C ? , with A# positive and self adjoint and   1/2 R F# = R (C ) . Yann Grisel

Defects localization applied to the inverse medium problem

9/ 25

The factorization method Theorem If Γe = Γm = S d−1 , n(x) ∈ R, n? (x) ∈ R, then n(x) 6= n? (x) ⇐⇒ ∃g ∈ L2 (S d−1 )

/

⇐⇒ 0 < S{n,n? } (x) :=

1/2

F# g = un (−·, x) !−1 X hun (−·, x), ψj iL2 (S d−1 ) 2 σj j

1/2

where (ψj , σj ) is an eigen-system for F# , and un is the total field induced by n.

Figure: Plot of S{n,n? } (x) for a 2D object with two defects Yann Grisel

Defects localization applied to the inverse medium problem

10/ 25

2 - Enhancements of the Gauss-Newton method via defects localization

Yann Grisel

Defects localization applied to the inverse medium problem

11/ 25

Application 1: selective reconstruction of a perturbed index

1 2 3

Input: n0 ∈ L2 (O) = known initial state Si ← maxZi S{n0 ,n? } (x); OT ← the set of zones for which Si > T max(Si ); npEnd ← G.-N.(n0 OT ) (all indices are extended by n0 outside OT ); Output: npEnd Algorithm 1: Selective reconstruction

Yann Grisel

Defects localization applied to the inverse medium problem

12/ 25

Application 1: selective reconstruction of a perturbed index (real part) 0.6

0.6

0.6 1.6

0.4 0.2

1.6

0.4 0.2

1.4

1.4

0

0

−0.2

1.2−0.2

1.2−0.2

−0.4

−0.4

−0.4

−0.6

1 −0.6

1 −0.6

0

0.5

1

−0.5

0

0.5

−0.5

1.6

Selected 0.4

0.4

0.2

0.2

1.4

0

0

−0.2

−0.2

1.2

−0.4

−0.4

Rejected

1

−0.6

−0.6 −0.5

0

0.5

1

(d) Thresholded selection Yann Grisel

−0.5

0

0.5

0.1

0

0.5

1

(c) Level lines of S{n0 ,n? }

0.6 0.6

0.2

1

(b) Initial guess n0 (x) Final relative error (e p En d) in %

−0.5

0.3

0.2

0

(a) Perturbed index n? (x)

0.4

0.4

10

Selective reconstruction error Selection ratio (/10)

9 8 7 6 5 4 3 2 1 0

1

(e) Selective reconstruction Defects localization applied to the inverse medium problem

(f)

10 20 Selection Threshold (T )

?

n −np

End epEnd := kn? k

30

13/ 25

Application 2: adaptive refinement

1 2 3 4 5 6 7 8 9 10 11

Input: n0 ∈ L2 (O) = a single constant (no a priori information) p ← 0; repeat Si ← maxZi S{np ,n? } (x); I ← {i such that Zi contains more than 16 mesh elements}; iSplit ← i such that SiSplit = maxi∈I Si ; Update the set of zones by splitting ZiSplit into four sub-zones; Update the set of parameters accordingly by duplicating ηiSplit three times; N ← N + 3; np+pEnd ← G.-N.(np ); p ← p + pEnd ; until N > Nmax or each Zi contains less than 16 mesh elements; Output: npEnd Algorithm 2: Adaptive refinement

Yann Grisel

Defects localization applied to the inverse medium problem

14/ 25

Application 2: adaptive refinement

0.6 0.8

0.4

0.6

0.75 0.6

0.58

0.4

0.7

0.4

0.56

0.2

0.54

0

0.52

0.2

0.75 0.2

0

0

0.7

−0.2 −0.4 −0.6 0

0.5

0.6

−0.2

−0.2

0.65−0.4

0.55−0.4

−0.6

0.5 −0.6

0.6 −0.5

0.65

1

−0.5

0

0.5

1

0.5 0.48 0.46 −0.5

0

0.5

1

(g) Loop 2 - zone to be splitted (h) Loop 3 - zone to be splitted (i) Loop 4 - zone to be splitted (maxZi S{n7 ,n? } (x))

(maxZi S{n11 ,n? } (x)) 2

0.6 0.4

0

2

0.6

1.8

0.2

(maxZi S{n15 ,n? } (x))

0.4 0.2

0.4

1.8

0.2 0

1.6

−0.4

−0.2 1.4 −0.4

−0.2 1.4 −0.4

1.4

−0.6

1.2−0.6

1.2−0.6

1.6

−0.2

−0.5

0

0.5

1

(j) Loop 2 - reconstruction with 7 parameters

0

2

0.6

1.8 1.6

−0.5

0

0.5

1

1.2 −0.5

0

0.5

1

(k) Loop 3 - reconstruction

(l) Loop 4 - reconstruction with

with 10 parameters

13 parameters

Figure: Adaptive refinement Yann Grisel

Defects localization applied to the inverse medium problem

15/ 25

Application 2: adaptive refinement 2

0.6 0.4

0.6

0

1.6

0.4

1.8

0.2

0.2

1.4

0

1.6

−0.2

−0.2 1.4

−0.4 −0.6 0

0.5

1

−0.6

1.2 −0.5

1.2

−0.4

1

−0.5

0

0.5

1

(b) Unknown index n?

(a) Loop 8 - reconstruction with 25 parameters

Relative error (e p ) in %

Figure: Adaptive refinement

13

N>10

12

N>20

11

10

9 0

Yann Grisel

Selective reconstruction error Standard reconstruction error

10

20 Iterations (p)

30

Figure: Evolution of the relative error Defects localization applied to the inverse medium problem

16/ 25

Selective reconstruction and adaptive refinement combined

1 2 3

Input: n0 ∈ L2 (O) = known initial state Si ← maxZi S{n0 ,n? } (x); OT ← the set of zones for which Si > T max(Si ); npEnd ← Adaptive refinement(n0 OT ) (indices are extended by n0 outside OT ); Output: npEnd Algorithm 3: Selective reconstruction followed by adaptive refinement

Yann Grisel

Defects localization applied to the inverse medium problem

17/ 25

Selective reconstruction and adaptive refinement combined 0.6 1.6

0.4

0.6 Selected

0.4

0.2

1.4

0.2

1.2

−0.2

0

0

−0.2 −0.4

−0.4

1

−0.6 −0.5

0

0.5

Rejected

−0.6

1

−0.5

(a) Initial guess

0

0.5

1

(b) Thresholded selection T = 10%

0.6

0.6 1.6

0.4 0.2

1.4

0

1.6

0.4 0.2

1.4

0

−0.2

1.2

−0.4

−0.2

1.2

−0.4 1

−0.6 −0.5

0

0.5

1

(c) Selective reconstruction with 1 parameter

1

−0.6 −0.5

0

0.5

1

(d) Selective reconstruction with 14 adaptive refinements

Figure: Adaptive reconstruction of a perturbed index (real part) Yann Grisel

Defects localization applied to the inverse medium problem

18/ 25

Selective reconstruction and adaptive refinement combined

T = 10% T = 20% T = 30%

Relative error (e p ) in %

11 10 9 8 7 6 0

10

20 30 Iterations (p)

40

Figure: Evolution of the relative error for 3 different selection thresholds

Yann Grisel

Defects localization applied to the inverse medium problem

19/ 25

3 - A new approach to the inverse medium problem

Yann Grisel

Defects localization applied to the inverse medium problem

20/ 25

Uniqueness of the solution Theorem If n(x), n? (x) ∈ R (n − n? )(x) > 0 or < 0 Incoming and measurement directions covering the whole unit sphere Then un∞ = un∞? on (S d−1 × S d−1 ) ⇐⇒ S{n,n? } = 0 on R ⇐⇒ n = n? on R Usual (regularized) cost-function: J(n) := kF(n) − uε k2L2 (Γe ×Γm ) + λ kn − n0 k2L2 (O) . Defects (regularized) cost-function:

2 JS (n) := S{n, n? } L2 (O) + λ kn − n0 k2L2 (O) . Observation space: L2 (O) =⇒ Straightforward domain decomposition Yann Grisel

Defects localization applied to the inverse medium problem

21/ 25

A new fidelity term Derivative of the defects localization (eigen-system of F# version)  ∂n S{n,n? } (x) dn = 2 X −2 S{n,n? } (x) σi |hun , ψi i|2 ∂n σi (n)dn o n 2 X −1 − S{n,n? } (x) σi 2Re hun , ψi i (hun , ∂n ψi (n)dni + hψi , ∂n un dni) ∂n un dn = v , (∆ + k 2 n)v = −k 2 dn un and Sommerfeld radiation condition ∂n ψi (n)dn = −(F# − σi id)† (∂n F# (n)dn)ψi ∂n σi (n)dn = h(∂n F# (n)dn)ψi , ψi i ∂n F# (n)dn = X + Y ,     Re (Fn − Fn? )Sn? X + X Re (Fn − Fn? )Sn? =     Re (Fn − Fn? )Sn? Re ∂n Fn dn Sn? + 2ik |γ| (Fn − Fn? )∂n Fn dn     Im (Fn − Fn? )Sn? Y + Y Im (Fn − Fn? )Sn? =     Im (Fn − Fn? )Sn? Im ∂n Fn dn Sn? + 2ik |γ|2 (Fn − Fn? )∂n Fn dn D E ∂n Fn dn = un dn, un (−·, ·) Yann Grisel

L2 (O) Defects localization applied to the inverse medium problem

22/ 25

A new fidelity term Derivative of the defects localization (singular-system of Fn version)  ∂n S{n,n? } (x) dn = 2 X −2 S{n,n? } (x) σi |hun , ψi i|2 ∂n σi (n)dn o n 2 X −1 − S{n,n? } (x) σi 2Re hun , ψi i (hun , ∂n ψi (n)dni + hψi , ∂n un dni) ∂n un dn = v , (∆ + k 2 n)v = −k 2 dn un and Sommerfeld radiation condition ∂n ψi (n)dn = (Fn? Fn − σi2 id)† Fn? (∂n Fn (n)dn)ψi + σi (Fn? Fn − σi2 id)† (∂n Fn (n)dn)? φi ∂n σi (n)dn = h(∂n Fn (n)dn)ψi , φi i D E ∂n Fn (n)dn = un dn, un (−·, ·)

L2 (O)

0.6

2.2

0.4

2.1

0.2 2

0

1.9

−0.2 −0.4

1.8

−0.6 Yann Grisel

Defects localization applied to the inverse medium problem

−0.5

0

0.5

1

23/ 25

Conclusion and perspectives

Yann Grisel

Defects localization applied to the inverse medium problem

24/ 25

Achievements Localization of defects Selective reconstruction Adaptive refinement New reconstruction approach Perspectives Extension of the localization to limited aperture data and absorbing media → S{n,n? } requires n(x) ∈ R, n? (x) ∈ R and Γe = Γm = S d−1 Motion detection in inhomogeneous media → S{n,n? } requires un∞? , un∞ and un Free domain decomposition through the new reconstruction approach → S{n,n? } (x) = 0 on a subdomain =⇒ n = n? on that subdomain L1 -norm minimisation → Seems better adapted to ”0/1” functions Thank you for your attention

Yann Grisel

Defects localization applied to the inverse medium problem

25/ 25