De Moivre’s theorem – exam questions Question 1: Jan 2007
Question 2: June 2007
Question 3: Jan 2006
It is given that z ei . 1 a ) i )Show that z 2 cos z 1 z2 1 1 iii ) Hence show that z 2 z 2 2 4 cos 2 2 cos z z b) Hence solve the quartic equation z 4 z 3 2 z 2 z 1 0 giving the roots in the form a ib. ii ) Find a similar expression for z 2
(2 marks ) (2 marks )
(3 marks )
(5 marks )
Question 4: Jan 2010
Question 5: June 2009
Question 6: Jan 2009
Question 7: June 2006
Question 8: Jan 2008
Question 9: June 2008
De Moivre’s theorem – exam questions ‐ answers Question 1: Jan 2007
6 6 iSin Cos iSin 1 b) Cos iSin Cos 6 6 6 6 c) (Cos i sin )(1 Cos i sin ) (Cos iSin ) (Cos iSin )(Cos i sin ) 6
(Cos iSin ) Cos 2 Sin 2 Cos iSin 1 d ) (1 Cos
iSin )6 (1 Cos iSin )6 (Cos i sin )(1 Cos i sin ) (1 Cos iSin )6 6 6 6 6 6 6 6 6 6 6
6
iSin )6 1 Cos iSin (1 Cos iSin )6 1 1 Cos iSin (1 Cos iSin )6 0 6 6 6 6 6 6 6 6 6 6 Question 2: June 2007 15 Cos iSin Cos 15 iSin 15 0 i (Cos
6
Cos(15 ) 0 and Sin(15 ) 1 3 3 so 15 2 30 10 Question 3: Jan 2006
6
z ei a) i) z
1 1 ei i ei e i z e Cos iSin Cos iSin
ii ) z 2
z
1 2Cos z
1 1 ei 2 i 2 ei 2 e i 2 2 z e Cos 2 iSin 2 Cos 2 iSin 2 z 2
1 2Cos 2 z2
1 1 iii ) z 2 z 2 2 2Cos 2 2Cos 2 z z we know that Cos 2 2Cos 2 1 so 1 1 z 2 z 2 2 2(2Cos 2 1) 2Cos 2 z z 1 1 z 2 z 2 2 4Cos 2 2Cos z z 4 3 2 b) z z 2 z z 1 0 factorise by z 2 ( z 0 is not a solution) 1 1 1 1 z 2 ( z 2 z 2 2 ) 0 This gives z 2 z 2 2 0 z z z z 2 4Cos 2Cos 0 2Cos (2Cos 1) 0 Cos 0 or Cos
ze
or
2 i
2
2
1 2
or
i or z e
i
3
or
3 1 3 i 2 2
3
Question 4: Jan 2010
a) i) e
i
2 7
b)1 2 3 4 5 6 is a geometric series with common ration
7
i 2 so e 7 e 2i cos 2 i sin 2 1 is a solution of z 7 1 7
1 7 11 0 1 1 4 4 i 4 c) i ) 2 5 2 2 e 7 e 7 2 cos 7 2 3 4 5 6 ii )1 0
1 2 3 4 5 6
2 7 the other non real solutions are
ii ) 7 k 2
k
for k 2, e for k 4, e for k 6, e
i
i
4 i 7 8 7
2
12 7
for k 3, e for k 5, e
4
i
6 i 7
10 7
2 3 3 2 1 1 1 2 2 3 3 1 2 4 6
3
2 cos
5
6
cos
2 cos
7
7
2 cos
7
1
2 4 6 1 cos cos 7 7 7 2
Question 5: June 2009 i
a) z 2e 12
4
1 3 z 4 16 cos iSin 16 i 3 3 2 2
i i12 so z 2e 16e 3 4
z 4 8(1 i 3)
a 8
b) let's write z re
i
, z r 4 ei 4 4
z is a solution of this equation when
r 4 16 and 4 = r 2 and
3
k 2
k
12
i
k 2, 1, 0,1
2
Question 6: Jan 2009
a) z 4 ei z 4 e i z 8 z 4 e i z 4 ei 1 z 8 z 4 ei e i 1 1 ( ) , z 8 2 z 4 cos 1 becomes z 8 z 4 1 0 2 3 i i We can factorise as z 4 e 3 z 4 e 3 0
b) for cos
We need to solve z e
i
3
(rei ) 4 e r 1 or 4
This gives z e c)
11 i 12
,e
3
12 i
5 12
i
r 4 e 4i e
3
i
3
k 2
k 2
,e
i
12
,e
i
i
5 12
, 2e
i
11 12
i
7
, 2e 12
z 8 z 4 2 cos 1 z 8 2 z 4 cos 1
4
Solutions are : 2e 12 , 2e
9 12
Question 7: June 2006 a ) Let note z rei then z 6 r 6 ei 6
and 1 1ei 0
The equation z 6 1 is equivalent to
r 6 ei 6 1 ei 0
This gives r 6 1 r 1 6 0 k 2
k so z e
i
2 3
i
or e
3 k 3
2 k 3
3
3
or ei 0 or e
i
3
or e
i
2 3
or ei
w2 1 ei 2 1 ei (ei e i ) ei e i 2iSin w ei ei i w i 1 1 ii ) 2 2 Sin w 1 2iSin 2iSin i e i Cos iSin 2i 2i 1 iii ) 2 i w 1 2iwSin e Sin Sin Sin Cos Sin i Cot i Sin Sin 2i iv) z Cot i so 2 z w 1 2i zw2 z
b)i )
z 2i zw2 c) i ) ( z 2i )6 z 6 is equivalent to order 5 polynomial=0 (the term in z 6 cancel out ) z 2i 1 z 6
ii ) ( z 2i )6 z 6 So w2 e
i
k 3
we
(question a )
This gives z cot 0 i , cot
i
( w2 ) 6 1
k 6
i , cot
i , cot
6 3 3 3 i , i, 3 i z i , 3 i , 3 3
2 5 i , cot i 3 6
Question 8: Jan 2008
i 1 1 4 i a) 4 4i 4 2 4 2e 2 2 5 i 5 b) Let's write z (re ) r 5ei 5
z 5 4 4i becomes r 5ei 5 4 2e
i
4
so r 5 4 2 and 5
k 2
2 k 2, 1, 0,1, 2 20 5 15 7 9 17 r 2 and , , , , 20 20 20 20 20 The 5th roots of 4 4i are : r 2 and
2e
i
3 4
, 2e
i
7 20
4
k
i
, 2e 20 , 2e
i
9 20
, 2e
i
17 20
Question 9: June 2008 1 1 1 1 a) i ) z z z 2 1 1 2 z 2 2 z z z z
1 1 1 1 1 ii ) z z z z z z z z z z 4
2
2
2
2
1 1 z 2 2 2 z 2 2 z z 1 1 z 2 2 2 z 4 4 2 z z 1 1 2 2 z6 2 2z2 z2 6 2 2z4 4 4 z z z z 1 1 1 z6 6 z2 2 2 z4 4 4 z z z
1 b)i ) z n cos n i sin n cos n i sin n 2 cos n z 1 ii ) z n n cos n i sin n cos n i sin n 2i sin n z 4 2 1 1 1 1 4 2 c) cos sin 4 z z 2 z 2i 2 z n
4
1 1 1 z z 64 z z
2
1 6 1 2 1 4 1 z 6 z 2 2 z 4 4 z 64 z z 1 2 cos 6 2 cos 2 4 cos 4 4 64 1 1 1 1 cos 6 cos 4 cos 2 32 16 32 16 1 1 1 1 d ) cos 4 sin 2 d cos 6 cos 4 cos 2 d 32 16 32 16 1 1 1 1 sin 6 sin 4 sin 2 c 192 64 64 16