DDR3 2Gb C_die Unbuffered SODIMM_Rev1.22_Dec.10.book

S.H.Kim. 1.1. - Changed DIMM IDD Definition. Jan. 2010. -. S.H.Kim. - Added DIMM IDD Specification. 1.2. - Added "CL5" to supported CL setting. Feb. 2010.
952KB taille 1 téléchargements 139 vues
Rev. 1.22, Dec. 2010 M471B5773CHS M471B5273CH0

204pin Unbuffered SODIMM based on 2Gb C-die 78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. ⓒ 2010 Samsung Electronics Co., Ltd. All rights reserved.

-1-

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

Revision History Revision No.

History

Draft Date

Remark

Editor

1.0

- First Release

Dec. 2009

-

S.H.Kim

1.1

- Changed DIMM IDD Definition

Jan. 2010

-

S.H.Kim

- Added DIMM IDD Specification 1.2

- Added "CL5" to supported CL setting

Feb. 2010

-

S.H.Kim

1.21

- Corrected Typo.

Mar. 2010

-

S.H.Kim

1.22

- Corrected Typo.

Dec. 2010

-

S.H.Kim

-2-

Unbuffered SODIMM

datasheet

Rev. 1.22

DDR3 SDRAM

Table Of Contents 204pin Unbuffered SODIMM based on 2Gb C-die 1. DDR3 Unbuffered SODIMM Ordering Information........................................................................................................ 4 2. Key Features................................................................................................................................................................. 4 3. Address Configuration .................................................................................................................................................. 4 4. x64 DIMM Pin Configurations (Front side/Back Side)................................................................................................... 5 5. Pin Description ............................................................................................................................................................. 6 6. Input/Output Functional Description.............................................................................................................................. 7 7. Function Block Diagram: ............................................................................................................................................... 8 7.1 2GB, 256Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................................... 8 7.2 4GB, 512Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ................................................................... 9 8. Absolute Maximum Ratings .......................................................................................................................................... 10 8.1 Absolute Maximum DC Ratings............................................................................................................................... 10 8.2 DRAM Component Operating Temperature Range ................................................................................................ 10 9. AC & DC Operating Conditions..................................................................................................................................... 10 9.1 Recommended DC Operating Conditions (SSTL-15).............................................................................................. 10 10. AC & DC Input Measurement Levels .......................................................................................................................... 11 10.1 AC & DC Logic Input Levels for Single-ended Signals .......................................................................................... 11 10.2 VREF Tolerances.................................................................................................................................................... 12 10.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 13 10.3.1. Differential Signals Definition ......................................................................................................................... 13 10.3.2. Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................................. 13 10.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 14 10.3.4. Differential Input Cross Point Voltage ............................................................................................................ 15 10.4 Slew Rate Definition for Single Ended Input Signals............................................................................................. 15 10.5 Slew rate definition for Differential Input Signals ................................................................................................... 15 11. AC & DC Output Measurement Levels ....................................................................................................................... 16 11.1 Single Ended AC and DC Output Levels ............................................................................................................... 16 11.2 Differential AC and DC Output Levels ................................................................................................................... 16 11.3 Single-ended Output Slew Rate ............................................................................................................................ 16 11.4 Differential Output Slew Rate ................................................................................................................................ 17 12. DIMM IDD specification definition ............................................................................................................................... 18 13. IDD SPEC Table ......................................................................................................................................................... 20 14. Input/Output Capacitance ........................................................................................................................................... 21 15. Electrical Characteristics and AC timing ..................................................................................................................... 22 15.1 Refresh Parameters by Device Density................................................................................................................. 22 15.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 22 15.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 22 15.3.1. Speed Bin Table Notes .................................................................................................................................. 26 16. Timing Parameters by Speed Grade .......................................................................................................................... 27 16.1 Jitter Notes ............................................................................................................................................................ 30 16.2 Timing Parameter Notes........................................................................................................................................ 31 17. Physical Dimensions : ................................................................................................................................................. 32 17.1 256Mbx8 based 256Mx64 Module (1 Rank) - M471B5773CHS ........................................................................... 32 17.2 256Mbx8 based 512Mx64 Module (2 Ranks) - M471B5273CH0 .......................................................................... 33

-3-

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

1. DDR3 Unbuffered SODIMM Ordering Information Number of Rank

Part Number2

Density

Organization

M471B5773CHS-CF8/H9/K0

2GB

256Mx64

256Mx8(K4B2G0846C-HC##)*8

1

30mm

M471B5273CH0-CF8/H9/K0

4GB

512Mx64

256Mx8(K4B2G0846C-HC##)*16

2

30mm

Component Composition

Height

NOTE : 1. "##" - F8/H9/K0 2. F8 - 1066Mbps 7-7-7 / H9 - 1333Mbps 9-9-9 / K0 - 1600Mbps 11-11-11 - DDR3-1600(11-11-11) is backward compatible to DDR3-1333(9-9-9), DDR3-1066(7-7-7) - DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7)

2. Key Features Speed

• • • • • • • • • • • • •

DDR3-800

DDR3-1066

DDR3-1333

DDR3-1600

6-6-6

7-7-7

9-9-9

11-11-11

Unit

tCK(min)

2.5

1.875

1.5

1.25

ns

CAS Latency

6

7

9

11

tCK

tRCD(min)

15

13.125

13.5

13.75

ns

tRP(min)

15

13.125

13.5

13.75

ns

tRAS(min)

37.5

37.5

36

35

ns

tRC(min)

52.5

50.625

49.5

48.75

ns

JEDEC standard 1.5V ± 0.075V Power Supply VDDQ = 1.5V ± 0.075V 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin 8 independent internal bank Programmable CAS Latency: 5,6,7,8,9,10,11 Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock Programmable CAS Write Latency(CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333) and 8 (DDR3-1600) Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] Bi-directional Differential Data Strobe Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%) On Die Termination using ODT pin Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE ≤ 95°C Asynchronous Reset

3. Address Configuration Organization

Row Address

Column Address

Bank Address

Auto Precharge

256Mx8(2Gb) based Module

A0-A14

A0-A9

BA0-BA2

A10/AP

-4-

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

4. x64 DIMM Pin Configurations (Front side/Back Side) Pin

Front

Pin

Back

Pin

Front

Pin

Back

Pin

Front

Pin

Back

1

VREFDQ

2

VSS

71

VSS

72

VSS

139

VSS

140

DQ38

3

VSS

4

DQ4

141

DQ34

142

DQ39

5

DQ0

6

DQ5

73

CKE0

74

CKE1

143

DQ35

144

VSS

7

DQ1

8

VSS

75

VDD

76

VDD

145

VSS

146

DQ44

9

VSS

78

A153

147

DQ40

148

DQ45

3

149

DQ41

150

VSS

151

VSS

152

DQS5

10

DQS0

KEY

77

NC

11

DM0

12

DQS0

79

BA2

80

A14

13

VSS

14

VSS

81

VDD

82

VDD

15

DQ2

16

DQ6

83

A12/BC

84

A11

153

DM5

154

DQS5

17

DQ3

18

DQ7

85

A9

86

A7

155

VSS

156

VSS

19

VSS

20

VSS

87

VDD

88

VDD

157

DQ42

158

DQ46

21

DQ8

22

DQ12

89

A8

90

A6

159

DQ43

160

DQ47

23

DQ9

24

DQ13

91

A5

92

A4

161

VSS

162

VSS

25

VSS

26

VSS

93

VDD

94

VDD

163

DQ48

164

DQ52

27

DQS1

28

DM1

95

A3

96

A2

165

DQ49

166

DQ53

29

DQS1

30

RESET

97

A1

98

A0

167

VSS

168

VSS

31

VSS

32

VSS

99

VDD

100

VDD

169

DQS6

170

DM6

33

DQ10

34

DQ14

101

CK0

102

CK1

171

DQS6

172

VSS

35

DQ11

36

DQ15

103

CK0

104

CK1

173

VSS

174

DQ54

37

VSS

38

VSS

105

VDD

106

VDD

175

DQ50

176

DQ55

39

DQ16

40

DQ20

107

A10/AP

108

BA1

177

DQ51

178

VSS

41

DQ17

42

DQ21

109

BA0

110

RAS

179

VSS

180

DQ60

43

VSS

44

VSS

111

VDD

112

VDD

181

DQ56

182

DQ61

45

DQS2

46

DM2

113

WE

114

S0

183

DQ57

184

VSS

47

DQS2

48

VSS

115

CAS

116

ODT0

185

VSS

186

DQS7

49

VSS

50

DQ22

117

VDD

118

VDD

187

DM7

188

DQS7

50

DQ18

52

DQ23

119

A133

120

ODT1

189

VSS

190

VSS

53

DQ19

54

VSS

121

S1

122

NC

191

DQ58

192

DQ62

55

VSS

56

DQ28

123

VDD

124

VDD

193

DQ59

194

DQ63

57

DQ24

58

DQ29

125

TEST

126

VREFCA

195

VSS

196

VSS

59

DQ25

60

VSS

127

VSS

128

VSS

197

SA0

198

NC

61

VSS

62

DQS3

129

DQ32

130

DQ36

199

VDDSPD

200

SDA

63

DM3

64

DQS3

131

DQ33

132

DQ37

201

SA1

202

SCL

65

VSS

66

VSS

133

VSS

134

VSS

203

VTT

204

VTT

67

DQ26

68

DQ30

135

DQS4

136

DM4

69

DQ27

70

DQ31

137

DQS4

138

VSS

NOTE : 1. NC = No Connect, NU = Not Usable, RFU = Reserved Future Use 2. TEST(pin 125) is reserved for bus analysis probes and is NC on normal memory modules. 3. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor.

SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.

-5-

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

5. Pin Description Pin Name CK0, CK1 CK0, CK1 CKE0, CKE1

Description Clock Inputs, positive line

Number

Pin Name

Description

Number

2

DQ0-DQ63

Data Input/Output

64

Data Masks/ Data strobes, Termination data strobes

8 8

Clock Inputs, negative line

2

DM0-DM7

Clock Enables

2

DQS0-DQS7

Data strobes Data strobes complement

8

Reset Pin

1

Logic Analyzer specific test pin (No connect on SODIMM)

1

RAS

Row Address Strobe

1

DQS0-DQS7

CAS

Column Address Strobe

1

RESET

WE

Write Enable

1

TEST

S0, S1

Chip Selects

2

VDD

Core and I/O Power

18

Address Inputs

14

VSS

Ground

52

A10/AP

Address Input/Autoprecharge

1

VREFDQ VREFCA

Input/Output Reference

2

A12/BC

Address Input/Burst chop

1

VDDSPD

SPD and Temp sensor Power

1

BA0-BA2

SDRAM Bank Addresses

3

VTT

Termination Voltage

2

ODT0, ODT1

On-die termination control

2

NC

Reserved for future use

3

SCL

Serial Presence Detect (SPD) Clock Input

1

SDA

SPD Data Input/Output

1

SPD Address

2

A0-A9, A11, A13-A15

SA0-SA1

Total

NOTE: *The VDD and VDDQ pins are tied common to a single power-plane on these designs.

-6-

204

datasheet

Unbuffered SODIMM

Rev. 1.22

DDR3 SDRAM

6. Input/Output Functional Description Symbol

Type

Function

CK0-CK1 CK0-CK1

Input

The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock.

CKE0-CKE1

Input

Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refresh mode.

S0-S1

Input

Enables the associated DDR3 SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected by S1.

RAS, CAS, WE

Input

When sampled at the cross point of the rising edge of CK and falling edge of CK, signals CAS, RAS, and WE define the operation to be executed by the SDRAM.

BA0-BA2

Input

Selects which DDR3 SDRAM internal bank of eight is activated.

ODT0-ODT1

Input

Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3 SDRAM mode register.

A0-A9, A10/AP, A11 A12/BC A13-A15

Input

During a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK. During a Read or Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge.A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-the fly) will be performed (HIGH, no burst chop; LOW, burst chopped)

DQ0-DQ63

I/O

DM0-DM7

Input

The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect.

DQS0-DQS7 DQS0-DQS7

I/O

The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is sourced by the controller and is centered in the data window. In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent at the leading edge of the data window. DQS signals are complements, and timing is relative to the crosspoint of respective DQS and DQS.

VDD,VDDSPD, VSS

Supply

Power supplies for core, I/O, Serial Presence Detect, Temp sensor, and ground for the module.

VREFDQ, VREFCA

Supply

Reference voltage for SSTL15 inputs.

SDA

I/O

SCL

Input

This signal is used to clock data into and out of the SPD EEPROM and Temp sensor.

SA0-SA1

Input

Address pins used to select the Serial Presence Detect and Temp sensor base address.

TEST

I/O

RESET

Input

Data Input/Output pins.

This is a bidirectional pin used to transfer data into or out of the SPD EEPROM and Temp sensor. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pull up.

The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules RESET In Active Low This signal resets the DDR3 SDRAM

-7-

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

7. Function Block Diagram:

S0 RAS CAS WE CK0 CK0 CKE0 ODT0 A[0:N] /BA[0:N]

7.1 2GB, 256Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs)

240Ω

± 1% ZQ

D0

DQS1 DQS1 DM1 DQ[8:15]

240Ω

± 1% ZQ

D1

240Ω

± 1%

DQS3 DQS3 DM3 DQ[24:31]

DQS DQS DM DQ[0:7]

SCL A0 A1 A2

(SPD)

D4

240Ω

± 1% ZQ

D5

Vtt

Vtt

VDDSPD

SPD

VREFCA

D0 - D7

VREFDQ

D0 - D7

VDD

D0 - D7

VSS

D0 - D7, SPD

CK0

D0 - D7

CK0

D0 - D7

CK1

Terminated near card edge

CK1 S1

NC

ODT1

NC

CKE1

NC D0 - D7

RESET

± 1% ZQ

D2

DQS5 DQS5 DM5 DQ[40:47]

± 1% ZQ

D3

± 1% ZQ

D6

DQS7 DQS7 DM7 DQ[56:63]

DQS DQS DM DQ[0:7]

V1

V1

240Ω

± 1% ZQ

D4

D0

V2

V2

D5

D1

V3

V3

D6

D2

V4

V4

D7

D3

D7

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

240Ω

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

DQS DQS DM DQ[0:7]

240Ω

Vtt

DQS6 DQS6 DM6 DQ[48:55]

DQS DQS DM DQ[0:7]

Vtt

240Ω

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

DQS DQS DM DQ[0:7]

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

DQS4 DQS4 DM4 DQ[32:39]

SDA

WP

ZQ

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

DQS DQS DM DQ[0:7]

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

DQS2 DQS2 DM2 DQ[16:23]

DQS DQS DM DQ[0:7]

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

DQS DQS DM DQ[0:7]

CS RAS CAS WE CK CK CKE ODT A[0:N]/BA[0:N]

DQS0 DQS0 DM0 DQ[0:7]

SCL SA0 SA1

Address and Controllines

Rank0 Vtt Vtt VDD

-8-

NOTE : 1. DQ wiring may differ from that shown however ,DQ, DM, DQS and DQS relationships are maintained as shown.

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

7.2 4GB, 512Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) VDD

VDD

240Ω

± 1% ZQ

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

D0

240Ω

± 1% ZQ

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

D2

SCL SA0 SA1

SCL A0 A1 A2

CK0 CK0 CKE0 ODT0

DQS DQS DM DQ[0:7]

240Ω

DQS DQS DM DQ[0:7]

± 1% ZQ

D9

240Ω

± 1% ZQ

D8

DQS DQS DM DQ[0:7]

Rank0 Rank1

240Ω

SDA

WP

NOTE : 1. DQ wiring may differ from that shown however ,DQ, DM, DQS and DQS relationships are maintained as shown

DQS DQS DM DQ[0:7]

DQS DQS DM DQ[0:7]

± 1% ZQ

D10

Vtt (SPD)

ZQ

240Ω

DQS DQS DM DQ[0:7]

± 1% ZQ

D14

240Ω

DQS DQS DM DQ[0:7]

± 1% ZQ

D15

240Ω

DQS DQS DM DQ[0:7]

± 1% ZQ

D13

Vtt

VDDSPD

SPD

VREFCA

D0 - D15

VREFDQ

D0 - D15

VDD

D0 - D15

VSS

D0 - D15, SPD

CK0

D0 - D7

CK1

D8 - D15

CK0

D0 - D7

CK1

D8 - D15

DQS4 DQS4 DM4 DQ[32:39]

± 1% ZQ

D12

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

D4

240Ω

240Ω

DQS6 DQS6 DM6 DQ[48:55]

± 1% ZQ

D6

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

S0 DQS DQS DM DQ[0:7]

DQS DQS DM DQ[0:7]

± 1%

240Ω

DQS7 DQS7 DM7 DQ[56:63]

± 1% ZQ

D7

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

D1

D3

240Ω

240Ω

DQS5 DQS5 DM5 DQ[40:47]

± 1% ZQ

D5

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

ZQ

ZQ

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS DQS DM DQ[0:7]

± 1%

DQS DQS DM DQ[0:7]

± 1%

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS2 DQS2 DM2 DQ[16:23]

240Ω

240Ω

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS DQS DM DQ[0:7]

D11

DQS DQS DM DQ[0:7]

Vtt

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS0 DQS0 DM0 DQ[0:7]

ZQ

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS DQS DM DQ[0:7]

± 1%

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS1 DQS1 DM1 DQ[8:15]

240Ω

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS DQS DM DQ[0:7]

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

DQS3 DQS3 DM3 DQ[24:31]

Vtt

CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0]

S1 RAS CAS WE CK1 CK1 CKE1 ODT1 A[0:N] /BA[0:N]

Vtt

D9

V2

D3

V1 V9

V3 D8

D0

V4 V4

D10

D2

V3 D1

V2

D11

V5 V1 V5 Vtt V1 V9

D12

V8

D6 V7

D5

D13

V6 V6

D7

D15 V7

D4

V8

D14

D0 - D7

RESET

Address and Controllines

-9-

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

8. Absolute Maximum Ratings 8.1 Absolute Maximum DC Ratings Symbol

Parameter

Rating

Units

NOTE

VDD

Voltage on VDD pin relative to VSS

-0.4 V ~ 1.975 V

V

1,3

VDDQ

Voltage on VDDQ pin relative to VSS

-0.4 V ~ 1.975 V

V

1,3

VIN, VOUT

Voltage on any pin relative to VSS

-0.4 V ~ 1.975 V

V

1

TSTG

Storage Temperature

-55 to +100

°C

1, 2

NOTE : 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.

8.2 DRAM Component Operating Temperature Range Symbol

Parameter

rating

Unit

NOTE

TOPER

Operating Temperature Range

0 to 95

°C

1, 2, 3

NOTE : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.

9. AC & DC Operating Conditions 9.1 Recommended DC Operating Conditions (SSTL-15) Symbol VDD VDDQ

Parameter

Rating

Units

NOTE

1.575

V

1,2

1.575

V

1,2

Min.

Typ.

Max.

Supply Voltage

1.425

1.5

Supply Voltage for Output

1.425

1.5

NOTE: 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.

- 10 -

Unbuffered SODIMM

Rev. 1.22

datasheet

DDR3 SDRAM

10. AC & DC Input Measurement Levels 10.1 AC & DC Logic Input Levels for Single-ended Signals [ Table 1 ] Single Ended AC and DC input levels for Command and Address Symbol

DDR3-800/1066/1333/1600

Parameter

Unit

NOTE

VDD

mV

1,5

VSS

VREF - 100

mV

1,6

VREF + 175

NOTE 2

mV

1,2,7

VIL.CA(AC175) AC input logic low

NOTE 2

VREF - 175

mV

1,2,8

VIH.CA(AC150) AC input logic high

VREF+150

NOTE 2

mV

1,2,7

NOTE 2

VREF-150

mV

1,2,8

0.49*VDD

0.51*VDD

V

3,4

Min.

Max.

VIH.CA(DC100) DC input logic high

VREF + 100

VIL.CA(DC100) DC input logic low VIH.CA(AC175) AC input logic high

VIL.CA(AC150) AC input logic low VREFCA(DC)

Reference Voltage for ADD, CMD inputs

NOTE : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See ’Overshoot/Undershoot Specification’ on page 18. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100) 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175) and VIH.CA(AC150); VIH.CA(AC175) value is used when VREF + 175mV is referenced and VIH.CA(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150); VIL.CA(AC175) value is used when VREF - 175mV is referenced and VIL.CA(AC150) value is used when VREF - 150mV is referenced.

[ Table 2 ] Single Ended AC and DC input levels for DQ and DM Symbol

Parameter

DDR3-800/1066 Min.

DDR3-1333/1600 Max.

Min.

Max.

Unit

NOTE

mV

1,5

VIH.DQ(DC100) DC input logic high

VREF + 100

VDD

VREF + 100

VDD

VIL.DQ(DC100) DC input logic low

VSS

VREF - 100

VSS

VREF - 100

mV

1,6

VIH.DQ(AC175) AC input logic high

VREF + 175

NOTE 2

-

-

mV

1,2,7

VIL.DQ(AC175) AC input logic low

NOTE 2

VREF - 175

-

-

mV

1,2,8

VIH.DQ(AC150) AC input logic high

VREF + 150

NOTE 2

VREF + 150

NOTE 2

mV

1,2,7

VIL.DQ(AC150) AC input logic low

NOTE 2

VREF - 150

NOTE 2

VREF - 150

mV

1,2,8

0.49*VDD

0.51*VDD

0.49*VDD

0.51*VDD

V

3,4

VREFDQ(DC)

Reference Voltage for DQ, DM inputs

NOTE : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See ’Overshoot/Undershoot Specification’ on page 18. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100) 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when VREF - 150mV is referenced.

- 11 -

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

10.2 VREF Tolerances. The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.

voltage

VDD

VSS

time

Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits

The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1. This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.

- 12 -

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

10.3 AC and DC Logic Input Levels for Differential Signals 10.3.1 Differential Signals Definition

tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK)

VIH.DIFF.AC.MIN

VIH.DIFF.MIN

0.0 half cycle

VIL.DIFF.MAX

VIL.DIFF.AC.MAX tDVAC time

Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC

10.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) Symbol

Parameter

VIHdiff

DDR3-800/1066/1333/1600

unit

NOTE

NOTE 3

V

1

NOTE 3

-0.2

V

1

differential input high ac

2 x (VIH(AC) - VREF)

NOTE 3

V

2

differential input low ac

NOTE 3

2 x (VIL(AC) - VREF)

V

2

min

max

differential input high

+0.2

VILdiff

differential input low

VIHdiff(AC) VILdiff(AC)

NOTE : 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL need to be within the respective limits (VIH(DC) max, VIL(DC)min) for singleended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"

[ Table 3 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS. Slew Rate [V/ns]

tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV

tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV

min

max

min

max

> 4.0

75

-

175

-

4.0

57

-

170

-

3.0

50

-

167

-

2.0

38

-

163

-

1.8

34

-

162

-

1.6

29

-

161

-

1.4

22

-

159

-

1.2

13

-

155

-

1.0

0

-

150

-

< 1.0

0

-

150

-

- 13 -

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

10.3.3 Single-ended Requirements for Differential Signals Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every half-cycle. DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK .

VDD or VDDQ

VSEH min

VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL

VSS or VSSQ

time Figure 3. Single-ended requirement for differential signals

Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

[ Table 4 ] Single ended levels for CK, DQS, CK, DQS Symbol VSEH VSEL

Parameter

DDR3-800/1066/1333/1600

Unit

NOTE

NOTE 3

V

1, 2

(VDD/2)+0.175

NOTE 3

V

1, 2

NOTE 3

(VDD/2)-0.175

V

1, 2

NOTE 3

(VDD/2)-0.175

V

1, 2

Min

Max

Single-ended high-level for strobes

(VDD/2)+0.175

Single-ended high-level for CK, CK Single-ended low-level for strobes Single-ended low-level for CK, CK

NOTE : 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"

- 14 -

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

10.3.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. VDD CK, DQS VIX VDD/2 VIX

VIX CK, DQS VSS Figure 4. VIX Definition

[ Table 5 ] Cross point voltage for differential input signals (CK, DQS) Symbol

DDR3-800/1066/1333/1600

Parameter

VIX

Differential Input Cross Point Voltage relative to VDD/2 for CK,CK

VIX

Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS

Unit

Min

Max

-150

150

mV

-175

175

mV

-150

150

mV

NOTE

1

NOTE : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 ±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.

10.4 Slew Rate Definition for Single Ended Input Signals See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.

10.5 Slew rate definition for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below. [ Table 6 ] Differential input slew rate definition Measured

Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS)

Defined by

From

To

VILdiffmax

VIHdiffmin

VIHdiffmin

VILdiffmax

NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds

VIHdiffmin 0 VILdiffmax

delta TRdiff

delta TFdiff

Figure 5. Differential input slew rate definition for DQS, DQS and CK, CK

- 15 -

VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax Delta TFdiff

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

11. AC & DC Output Measurement Levels 11.1 Single Ended AC and DC Output Levels [ Table 7 ] Single Ended AC and DC output levels Symbol

Parameter

DDR3-800/1066/1333/1600

Units

VOH(DC)

NOTE

DC output high measurement level (for IV curve linearity)

0.8 x VDDQ

V

VOM(DC)

DC output mid measurement level (for IV curve linearity)

0.5 x VDDQ

V

VOL(DC)

DC output low measurement level (for IV curve linearity)

0.2 x VDDQ

V

VOH(AC)

AC output high measurement level (for output SR)

VTT + 0.1 x VDDQ

V

1

VOL(AC)

AC output low measurement level (for output SR)

VTT - 0.1 x VDDQ

V

1

NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2.

11.2 Differential AC and DC Output Levels [ Table 8 ] Differential AC and DC output levels DDR3-800/1066/1333/1600

Units

NOTE

VOHdiff(AC)

Symbol

AC differential output high measurement level (for output SR)

Parameter

+0.2 x VDDQ

V

1

VOLdiff(AC)

AC differential output low measurement level (for output SR)

-0.2 x VDDQ

V

1

NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs.

11.3 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below. [ Table 9 ] Single ended Output slew rate definition Measured

Description Single ended output slew rate for rising edge

To

VOL(AC)

VOH(AC)

VOH(AC)

Single ended output slew rate for falling edge

Defined by

From

VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC)

VOL(AC)

Delta TFse

NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.

[ Table 10 ] Single ended output slew rate Parameter Single ended output slew rate

Symbol SRQse

DDR3-800

DDR3-1066

DDR3-1333

DDR3-1600

Min

Max

Min

Max

Min

Max

Min

Max

2.5

5

2.5

5

2.5

5

2.5

5

Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) se : Single-ended Signals For Ron = RZQ/7 setting VOHdiff(AC)

VTT VOLdiff(AC)

delta TFdiff

delta TRdiff

Figure 6. Single-ended output slew rate definition

- 16 -

Units V/ns

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

11.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC)

for differential signals as shown in below.

[ Table 11 ] Differential Output slew rate definition Measured

Description Differential output slew rate for rising edge

To

VOLdiff(AC)

VOHdiff(AC)

VOHdiff(AC)

Differential output slew rate for falling edge

Defined by

From

VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC)

VOLdiff(AC)

Delta TFdiff

NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.

[ Table 12 ] Differential Output slew rate Parameter Differential output slew rate

Symbol SRQdiff

DDR3-800

DDR3-1066

DDR3-1333

DDR3-1600

Min

Max

Min

Max

Min

Max

Min

Max

5

10

5

10

5

10

5

10

Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) diff : Differential Signals For Ron = RZQ/7 setting

VOHdiff(AC)

VTT VOLdiff(AC)

delta TFdiff

delta TRdiff

Figure 7. Differential output slew rate definition

- 17 -

Units V/ns

Unbuffered SODIMM

datasheet

Rev. 1.22

DDR3 SDRAM

12. DIMM IDD specification definition Symbol

Description

IDD0

Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern

IDD1

Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern

IDD2N

Precharge Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern

IDD2P0

Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3)

IDD2P1

Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3)

IDD2Q

Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0

IDD3N

Active Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern

IDD3P

Active Power-Down Current CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0

IDD4R

Operating Burst Read Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern

IDD4W

Operating Burst Write Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern

IDD5B

Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern

IDD6

Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING

IDD6ET

Self-Refresh Current: Extended Temperature Range (optional)6) TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING

IDD7

Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern

IDD8

RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING

- 18 -

Unbuffered SODIMM

datasheet

Rev. 1.22

DDR3 SDRAM

NOTE : 1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B 2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B 3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit 4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature 5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range 6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device 7) IDD current measure method and detail patterns are described on DDR3 component datasheet 8) VDD and VDDQ are merged on module PCB. 9) DIMM IDD SPEC is measured with Qoff condition (IDDQ values are not considered)

- 19 -

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

13. IDD SPEC Table M471B5773CHS : 2GB (256Mx64) Module Symbol

CF8 (DDR3-1066@CL=7)

CH9 (DDR3-1333@CL=9)

CK0 (DDR3-1600@CL=11)

Unit

NOTE

IDD0

440

480

520

mA

1

IDD1

560

600

640

mA

1

IDD2P0(slow exit)

96

96

96

mA

IDD2P1(fast exit)

160

160

200

mA mA

IDD2N

240

280

280

IDD2Q

240

240

280

mA

IDD3P

240

240

280

mA

IDD3N

400

440

480

mA

IDD4R

800

920

1040

mA

IDD4W

920

1120

1200

mA

1 1

IDD5B

1360

1360

1440

mA

1

IDD6

96

96

96

mA

IDD7

1360

1680

1720

mA

IDD8

96

96

96

mA

1

NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.

M471B5273CH0 : 4GB (512Mx64) Module Symbol

CF8 (DDR3-1066@CL=7)

CH9 (DDR3-1333@CL=9)

CK0 (DDR3-1600@CL=11)

Unit

NOTE

IDD0

680

760

800

mA

1

IDD1

800

880

920

mA

1

IDD2P0(slow exit)

192

192

192

mA

IDD2P1(fast exit)

320

320

400

mA mA

IDD2N

480

560

560

IDD2Q

480

480

560

mA

IDD3P

480

480

560

mA

IDD3N

640

720

760

mA

IDD4R

1040

1200

1320

mA

IDD4W

1160

1400

1480

mA

1

IDD5B

1600

1640

1720

mA

1

IDD6

192

192

192

mA

IDD7

1600

1960

2000

mA

IDD8

192

192

192

mA

NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.

- 20 -

1

1

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

14. Input/Output Capacitance [ Table 13 ] Input/Output Capacitance Parameter

Symbol

Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) Input capacitance (CK and CK)

DDR3-800

DDR3-1066

DDR3-1333

DDR3-1600

Units

NOTE

2.3

pF

1,2,3

0.8

1.4

pF

2,3

0.15

0

0.15

pF

2,3,4

0.75

1.3

0.75

1.3

pF

2,3,6

0.2

0

0.15

0

0.15

pF

2,3,5

-0.5

0.3

-0.4

0.2

-0.4

0.2

pF

2,3,7,8

0.5

-0.5

0.5

-0.4

0.4

-0.4

0.4

pF

2,3,9,10

-0.5

0.3

-0.5

0.3

-0.5

0.3

-0.5

0.3

pF

2,3,11

-

3

-

3

-

3

-

3

pF

2, 3, 12

Min

Max

Min

Max

Min

Max

Min

Max

CIO

1.5

3.0

1.5

2.7

1.5

2.5

1.5

CCK

0.8

1.6

0.8

1.6

0.8

1.4

CDCK

0

0.15

0

0.15

0

CI

0.75

1.5

0.75

1.5

CDDQS

0

0.2

0

CDI_CTRL

-0.5

0.3

CDI_ADD_CMD

-0.5

Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS)

CDIO

Input/output capacitance of ZQ pin

CZQ

Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins)

NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance. 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK 5. Absolute value of CIO(DQS)-CIO(DQS) 6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE. 7. CDI_CTRL applies to ODT, CS and CKE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK)) 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS)) 12. Maximum external load capacitance on ZQ pin: 5pF

- 21 -

Rev. 1.22

datasheet

Unbuffered SODIMM

DDR3 SDRAM

15. Electrical Characteristics and AC timing (0 °C