

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Cut Branches before Looking for Bugs: Certifiably ... - Nikolai Kosmatov

assignment of variable v, and H otherwise), and let refplq be the set of variables T â€œ xpl1,Ïƒ1q ... plk,Ïƒkq ... y to L, denoted ProjLpTq, is defined element-wise:.

 Télécharger le PDF

 637KB taille
 3 téléchargements
 262 vues

 commentaire

 Report

Under consideration for publication in Formal Aspects of Computing

Cut Branches before Looking for Bugs: Certifiably Sound Verification on Relaxed Slices Jean-Christophe L´echenet1,2 Nikolai Kosmatov1 Pascale Le Gall2 1 CEA,

LIST, Software Reliability and Security Laboratory, PC 174, 91191 Gif-sur-Yvette France de Math´ ematiques et Informatique pour la Complexit´ e et les Syst` emes, CentraleSup´ elec, Universit´ e Paris-Saclay, 92295 Chˆ atenay-Malabry France

2 Laboratoire

Abstract. Program slicing can be used to reduce a given initial program to a smaller one (a slice) that preserves the behavior of the initial program with respect to a chosen criterion. Verification and validation (V&V) of software can become easier on slices, but require particular care in the presence of errors or nontermination in order to avoid unsound results or a poor level of code reduction in slices with respect to the initial program. This article proposes a theoretical foundation for conducting V&V activities on a slice instead of the initial program. We introduce the notion of relaxed slicing that is still capable of producing small slices, even in the presence of errors or non-termination, and establish an appropriate soundness property. It allows us to give a precise interpretation of verification results (absence or presence of errors) obtained for a slice in terms of the initial program. The implementation of these results in the Coq proof assistant is presented and some of its difficult points are discussed. Keywords: Program slicing, Trajectory-based semantics, Verification, Run-time errors, Non-terminating loops, Coq formalization

1. Introduction Context. Program slicing was initially introduced by Weiser [Wei81, Wei82] as a technique allowing to transform a given program into a simpler one, called a program slice, by analyzing its control and data flow. In the classic definition, a (program) slice is an executable program subset of the initial program whose behavior must be identical to a specified subset of the initial program’s behavior. This specified behavior that should be preserved in the slice is called the slicing criterion. A common slicing criterion is a program point Correspondence and offprint requests to: J.-C. L´ echenet, e-mail:

2

J.-C. L´ echenet, N. Kosmatov and P. Le Gall

l. We prefer this simple formulation to another criterion pl, V q where a set of variables V is also specified. Informally speaking, program slicing with respect to the criterion l should guarantee that any variable v at program point l takes the same value in the slice and in the original program. Since Weiser’s original work, many researchers have studied foundations of program slicing (e.g. [Amt08, BH93, BBD` 10, BDG` 06, CF89, DBH` 11, HRB88, RAB` 07, RY89, RY88]). Numerous applications of slicing have been proposed, in particular, to program understanding, software maintenance, debugging, program integration and software metrics. Comprehensive surveys on program slicing can be found e.g. in [BH04, Sil12, Tip95, XQZ` 05]. In recent classifications of program slicing, Weiser’s original approach is called static backward slicing since it simplifies the program statically, for all possible executions at the same time, and traverses it backwards from the slicing criterion in order to keep those statements that can influence this criterion. Static backward slicing based on control and data dependencies is also the purpose of this work. Goals and approach. Verification and Validation (V&V) can become easier on simpler programs after “cutting off irrelevant branches” [CKGJ12, GTXT11, HD95, KKPP15]. Our main goal is to address the following research question: (RQ) How can we soundly conduct V&V activities on slices instead of the initial program? In particular, if there are no errors in a program slice, what can be said about the initial program? And if an error is found in a program slice, does it necessarily occur in the initial program? We consider errors determined by the current program state such as runtime errors (that can either interrupt the program or lead to an undefined behavior). We also consider a realistic setting of programs with potentially non-terminating loops, even if this non-termination is unintended. So we assume neither that all loops terminate, nor that all loops do not terminate, nor that we have a preliminary knowledge of which loops terminate and which loops do not. Dealing with potential runtime errors and non-terminating loops is very important for realistic programs since their presence cannot be a priori excluded, especially during V&V activities. Although quite different at first glance, both situations have a common point: they can in some sense interrupt normal execution of the program preventing the following statements from being executed. Therefore, slicing away (that is, removing) potentially erroneous or non-terminating sub-programs from the slice can have an impact on soundness of program slicing. While some aspects of (RQ) were discussed in previous papers, none of them provided a complete formal answer in the considered general setting (as we argue in Sec. 3 and 8 below). To satisfy the traditional soundness property, program slicing would require to consider additional dependencies of each statement on previous loops and error-prone statements. That would lead to larger slices, where we would systematically preserve all potentially erroneous or non-terminating statements executed before the slicing criterion. Such slices would have a very limited benefit for our purpose of performing V&V on slices instead of the initial program. This work proposes relaxed slicing, a slicing technique where additional dependencies on previously executed (potentially) erroneous or non-terminating statements are not required. This approach leads to smaller slices, but needs a new soundness property. We state and prove a suitable soundness property using a trajectory-based semantics and show how this result can justify V&V on slices by characterizing possible verification results on slices in terms of the initial program. Relaxed slicing, its soundness property, and the justification of its use in V&V have been formalized in the Coq proof assistant [BC04] for a language representative for our purpose. The formalization is available in [L´ec16]. One key difficulty of this formalization is related to data dependence whose definition does not follow the structure of the program. It significantly complicates proofs by induction. Our solution proposes to reformulate the dependence relations in an executable form suitable for the computation of a slice. We prove that it is equivalent to the original definitions. We present the reformulations and some aspects of the Coq development. A certified implementation of relaxed slicing is automatically extracted from the Coq formalization. The contributions of this work include: ‚ a comprehensive analysis of issues arising for V&V on classic slices; ‚ the notion of relaxed slicing (Def. 5.6) for structured programs with possible errors and non-termination,

Cut Branches before Looking for Bugs: Certifiably Sound Verification on Relaxed Slices

3

1 : q = 0; 2 : r = a; 3 : while (b

des documents recommandant

[image: alt]

Cut Branches Before Looking for Bugs: Sound ... - Nikolai Kosmatov

The considered language and its semantics are defined in Sec. 3. Sec. variables appearing in its branches (or loop body) do not belong to refplq. We Weiser [34] introduced the basics of intraprocedural and interprocedural static slicing.

[image: alt]

Cut Branches Before Looking for Bugs: Sound Verification on Relaxed

Cut Branches Before Looking for Bugs: Sound. Verification on Relaxed Slices. Nikolai Kosmatov. Joint work with Jean-Christophe LÃ©chenet, Pascale Le Gall.

[image: alt]

slides - Nikolai Kosmatov

Aug 27, 2012 - 3 (not a triangle), 2 (equilateral), 1 (isosceles), 0 (other). Robust : validity of inputs is tested go looking for bugs by sub-dividing the paths ...

[image: alt]

A Constraint Solver for Sequences - Nikolai Kosmatov

1 Introduction. Research work ... The decidability of word equations with an addi- ... The general constraint solving problem for sequences is even more compli-.

[image: alt]

JournÃ©e CAP'TRONIC - Nikolai Kosmatov

Nov 29, 2017 - Invalid array index. â–· Invalid pointer ... Use the command frama-c-gui -wp -wp-rte file.c ... alarms for potential invalid ACSL annotations.

[image: alt]

Shadow State Encoding for Efficient Monitoring of ... - Nikolai Kosmatov

Apr 26, 2017 - time and memory overheads comparable to state-of-the-art memory debuggers. Keywords Memory safety, Shadow memory, Runtime monitor-.

[image: alt]

Combining Static and Dynamic Analyses for ... - Nikolai Kosmatov

form for collaborative verification of C programs, and Search Lab's FLINDER ... The recent Heartbleed bug [6] illustrated once again that critical security flaws can ... TU Graz, Austria), and authentication software for complex distributed networks

[image: alt]

MMFilter: A CHR-Based Solver for Generation of ... - Nikolai Kosmatov

Apr 3, 2018 - terms) and a body (with a list of CHR constraints and Prolog terms). A rule can have an identifier that is When such an operation appears, we add a constraint in the store saying that alglave/these.pdf. [3] J. Alglave and ..

[image: alt]

All-Paths Test Generation for Programs with ... - Nikolai Kosmatov

path-test generation based on symbolic execution, it is con- venient to distinguish two types: Eq(a[U], V) represents the delayed equality a[U] = V, and Aff(a[U] ...

[image: alt]

Frama-C, a Collaborative Framework for C Code ... - Nikolai Kosmatov

Q whose proof is done by analyzer B [17]. ... Function contracts can be also represented in the form of different behaviors. Predicates https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample/blob/master/ACSL- by-Example.pdf. 23.

[image: alt]

Projective Resolutions and Yoneda Algebras for ... - Nikolai KOSMATOV

Chair of Higher Algebra, Dept. of Mathematics ... conjecture the general form of the bicomplex for arbitrary parameters. The ... Section 3 introduces the notion of a. 2 {e(i, j) âˆˆ E |i, j âˆˆ V } and Ï• = Ï•|E . Note that a subdiagram D of D c

[image: alt]

Constraint-Based Techniques for Software Testing - Nikolai Kosmatov

sometimes very tricky methods. The intelligence of turn, the operation swap is called regularly to move the active process into waiting and, if there are some ...

[image: alt]

Test Case Generation with PATHCRAWLER ... - Nikolai Kosmatov

In current software engineering practice, testing [27, 25, 34, 3] is the primary approach Two ways to instrument a label: direct and tight instrumentation. Fig. 6.

[image: alt]

Ghosts for Lists: from Axiomatic to Executable ... - Nikolai Kosmatov

trial-size programs written in C. Frama-C offers combined formal methods Gladisch, C., Tyszberowicz, S.S.: Specifying linked data structures in JML for.

[image: alt]

A Constraint Solver for Sequences and its ... - Nikolai Kosmatov

ing for sequences from the practical point of view. leads to the state with qCashier = [n1, n2, n3, n4, n5, n6], ... Logical Foundations of Computer Science.

[image: alt]

Projective Resolutions and Yoneda Algebras for ... - Nikolai Kosmatov

of group algebras, these results allowed to find the cohomology ring of the corresponding ... to determine the Yoneda algebras for one infinite family of dihedral algebras: denote by ei the idempotents of R corresponding to the vertices i = 0,1,

[image: alt]

Frama-C A Collaborative Framework for C Code ... - Nikolai Kosmatov

Oct 26, 2017 - Tutorial at ISSRE 2017. Nikolai Kosmatov WP manual at http://frama-c.com/wp.html. â–· If all VCs are proved, the LIST, Dassault, Search Lab, FOKUS,...) no practical solution, not so much work (compared to test gen.).

[image: alt]

Verified Secure Kernels and Hypervisors for the ... - Nikolai Kosmatov

We use Frama-C [6,7], an open-source platform dedicated to analysis of. C programs ... Among them, automatic theorem provers, like Simplify [12], ALT-ERGO provide a mechanism for virtual memory translation, that translates the address.

[image: alt]

Boundary Coverage Criteria for Test Generation ... - Nikolai Kosmatov

particularly smart cards and transport systems. Keywords: ... domain of smart card software (GSM 11-11 standard [18],. Java Card angle specification fect i.

[image: alt]

Applications of formal verification for secure Cloud ... - Nikolai Kosmatov

Jun 30, 2015 - For low-level functions, we conducted a â€œclassicâ€� verification. â–» Specification with ... Native Client (NaCl) plugins use Chrome API. â–· ZeroVM: ...

[image: alt]

A Uniform Deductive Approach for Parameterized ... - Nikolai Kosmatov

ABSTRACT. We present a uniform verification method of safety proper- ties for classes of parameterized protocols. Properties like mutual exclusion or cache ...

[image: alt]

Estimates for the homological dimensions of ... - Nikolai Kosmatov

For a Î›-module X, we denote the injective, projective and flat dimensions of X by idÎ› X, pdÎ› X and fdÎ› X, respectively. The left ... Suppose that for every R-.

[image: alt]

ThÃ¨se de do ctorat - Nikolai Kosmatov

5.5 Example of a finite trajectory ending without error using program p of Figure 5.4 errors in the original program and in its slices, and thus answer the two questions asked above. To ensure Strictly speaking, the results 240.

[image: alt]

Structural Testing with PATHCRAWLER. Tutorial ... - Nikolai Kosmatov

PathCrawler-online structural testing tool, the user must pro- vide not only the full source code, but also must set the test parameters and program the oracle.

×
Report Cut Branches before Looking for Bugs: Certifiably ... - Nikolai Kosmatov

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

