

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Computer Science - Florent Bouchez Tichadou

Nov 20, 2009 - Turing machines (2): how powerful? What can a Turing machine do? In short: everything! In fact, we compare programming languages, ...

 Télécharger le PDF

 677KB taille
 7 téléchargements
 392 vues

 commentaire

 Report

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Computer Science: what is it all about? A view of computer science from a computer science guy

Florent Bouchez Indian Institute of Science Bangalore

Vignan University, Guntur, November 20th 2009

1 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Some myths about computer science

ˆ Computer scientists know how to repair computers.

It’s their job.

2 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Some myths about computer science

ˆ Computer scientists know how to repair computers.

It’s their job. ˆ Computer science = programming.

2 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Abstruse goose (webcomic)

http://abstrusegoose.com F. Bouchez (IISc)

All about computer science

3 / 24 20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Some myths about computer science

ˆ Computer scientists know how to repair computers.

It’s their job. ˆ Computer science = programming.

Do not forget there is “science” in “computer science.” In my opinion, it is better phrased as the “Science of Computing.” Of course, people in computer science have a tendency to be able to “repair” computers and to do programming. But I will try to show you a different face of computer science.

4 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Outline

What is computing? Decidability vs. undecidability P vs. NP problems Conclusion

5 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Outline

What is computing? Decidability vs. undecidability P vs. NP problems Conclusion

6 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Definition of computing What is a computation? ˆ calculating 38 ∗ 42 − 1209/69? ˆ finding air circulation around the wing of a plane? ˆ recognizing the face of someone known?

How do you compute? ˆ using pen and paper? ˆ using a calculator? ˆ using a computer? ˆ using your brain?

7 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Definition of computing What is a computation? ˆ calculating 38 ∗ 42 − 1209/69? ˆ finding air circulation around the wing of a plane? ˆ recognizing the face of someone known?

How do you compute? ˆ using pen and paper? ˆ using a calculator? ˆ using a computer? ˆ using your brain?

à The imaginary model of Turing Machines. 7 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Turing machines Named after Alan Turing, “father” of the first computers in WWII. Imaginary device invented years before the first modern computer as we know it.

A Turing machine It consists of: ˆ a semi-infinite tape of 0 or 1 ˆ a reading/writing head ˆ a finite number of states

8 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Turing machines (2): how powerful? What can a Turing machine do? In short: everything!

9 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Turing machines (2): how powerful? What can a Turing machine do? In short: everything! In fact, we compare programming languages, computing models, actual machines to Turing machines. If they are fully functional, they are called Turing-complete.

9 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Turing machines (2): how powerful? What can a Turing machine do? In short: everything! In fact, we compare programming languages, computing models, actual machines to Turing machines. If they are fully functional, they are called Turing-complete. Extension to Turing machines: ˆ more than one tape ˆ bigger alphabet ˆ multiple heads on each tape This does not make machines more “powerful.” Only maybe “faster” or easier to “program.”

9 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Turing machines (2): how powerful? What can a Turing machine do? In short: everything! In fact, we compare programming languages, computing models, actual machines to Turing machines. If they are fully functional, they are called Turing-complete. Extension to Turing machines: ˆ more than one tape ˆ bigger alphabet ˆ multiple heads on each tape This does not make machines more “powerful.” Only maybe “faster” or easier to “program.”

Example Unary multiplication on a 3-tape Turing machine. 9 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Turing machines (3): what for?

In fact, all modern computers are Turing machines. They have hard disks so big they are considered infinite, which can be read and written and have a CPU to decide where and what to read/write. Turing machines are a very simple model that is as powerful as any computer. Makes things easier to define what can be computed or not.

10 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Outline

What is computing? Decidability vs. undecidability P vs. NP problems Conclusion

11 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Decidable or undecidable? Problems can be separated in two categories. Decidable problems: it is possible to give an answer “yes” or “no.” Undecidable problems: you can’t decide if it is “yes” or “no” ! (maybe ??)

12 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Decidable or undecidable? Problems can be separated in two categories. Decidable problems: it is possible to give an answer “yes” or “no.” Undecidable problems: you can’t decide if it is “yes” or “no” ! (maybe ??)

Problem (Halt problem.) Given a program P and some data d, will the computation P(d) stop? The halt problem is undecidable: it is impossible to compute, for any program P, whether this program will stop over data d or not.

12 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . .

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 Px (n) = ∞ loop if Ph (n, n) = 1

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)?

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1 ⇐⇒ Ph (x, x) = 0

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1 ⇐⇒ Ph (x, x) = 0 ⇐⇒ Px (x) ∞ loop.

13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1 ⇐⇒ Ph (x, x) = 0 ⇐⇒ Px (x) ∞ loop. Impossible. 13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1 ⇐⇒ Ph (x, x) = 0 ⇐⇒ Px (x) ∞ loop. Impossible. ˆ Px (x) ∞ loop 13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1 ⇐⇒ Ph (x, x) = 0 ⇐⇒ Px (x) ∞ loop. Impossible. ˆ Px (x) ∞ loop ⇐⇒ Ph (x, x) = 1, 13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1 ⇐⇒ Ph (x, x) = 0 ⇐⇒ Px (x) ∞ loop. Impossible. ˆ Px (x) ∞ loop ⇐⇒ Ph (x, x) = 1, ⇐⇒ Px (x) stops. 13 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Informal proof of the halt problem A program is a number, they can be numbered: P1 , P2 , . . . , Pn , . . . Suppose a program solves the halt problem, then there exists h s.t.: (1 if Pn (d) stops Ph (n, d) = 0 else Let us construct another program, Px so that: (1 if Ph (n, n) = 0 i.e., Pn (n) does not stop Px (n) = ∞ loop if Ph (n, n) = 1 i.e., Pn (n) stops Now what is the result of Px (x)? ˆ Px (x) = 1 ⇐⇒ Ph (x, x) = 0 ⇐⇒ Px (x) ∞ loop. Impossible. ˆ Px (x) ∞ loop ⇐⇒ Ph (x, x) = 1, ⇐⇒ Px (x) stops. Impossible. F. Bouchez (IISc)

All about computer science

20/11/2009

13 / 24

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Some consequences of the halt problem ˆ There will never be a program that can guarantee that

another program will not enter an infinite loop. ˆ There will never be a program that can check if another

program is correct. ˆ There will never be a fully optimizing compiler. Theorem of full employment of compiler researchers.

14 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Some consequences of the halt problem ˆ There will never be a program that can guarantee that

another program will not enter an infinite loop. ˆ There will never be a program that can check if another

program is correct. ˆ There will never be a fully optimizing compiler. Theorem of full employment of compiler researchers.

Of course, some of these questions can be solved for particular instances. But not for any program.

14 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Some consequences of the halt problem ˆ There will never be a program that can guarantee that

another program will not enter an infinite loop. ˆ There will never be a program that can check if another

program is correct. ˆ There will never be a fully optimizing compiler. Theorem of full employment of compiler researchers.

Of course, some of these questions can be solved for particular instances. But not for any program. Before trying to solve a problem, better to know first whether or not it is undecidable. . . Hopefully, most real-life problems are decidable. 14 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Outline

What is computing? Decidability vs. undecidability P vs. NP problems Conclusion

15 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Complexity of problems

Knowing we can compute a problem is a thing. Knowing how much time it takes is something else. We will now see two categories of decidable problems. P problems are called Polynomial. NP problems are called Non-Polynomial

16 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Complexity of problems

Knowing we can compute a problem is a thing. Knowing how much time it takes is something else. We will now see two categories of decidable problems. P problems are called Polynomial. NP problems are called Non-Polynomial

16 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Complexity of problems

Knowing we can compute a problem is a thing. Knowing how much time it takes is something else. We will now see two categories of decidable problems. P problems are called Polynomial. NP problems are called “problems whose solution can be verified in polynomial time.”

16 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Complexity of problems

Knowing we can compute a problem is a thing. Knowing how much time it takes is something else. We will now see two categories of decidable problems. P problems are called Polynomial. NP problems are called “problems whose solution can be verified in polynomial time.” So, all P problems are also in NP. But the converse is not true.

16 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Examples of P and NP problems

Example (Array reduction) Given a finite array A of n elements, compute the sum of all elements of A.

17 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Examples of P and NP problems

Example (Array reduction) Given a finite array A of n elements, compute the sum of all elements of A. This is easily done in n steps using an accumulator. The time taken to compute the reduction increases linearly with n. The problem can be solved with this linear algorithm. The complexity is denoted O(n). Hence, it is polynomial (in P).

17 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Examples of P and NP problems (2)

Example (Array sort) Given a finite array A of n elements, order all elements of A in increasing order.

18 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Examples of P and NP problems (2)

Example (Array sort) Given a finite array A of n elements, order all elements of A in increasing order. Walk through A, swapping elements whenever the second is smaller than the first. Repeat this n times. The complexity is quadratic: it is denoted O(n2). This problem is also in P.

18 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Examples of P and NP problems (3) Example (Travelling Salesman Problem) A salesman must visit n cities and come back to its starting point. Find the order of visit that minimizes the distance travelled / travelling cost / travelling time. . .

19 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Examples of P and NP problems (3) Example (Travelling Salesman Problem) A salesman must visit n cities and come back to its starting point. Find the order of visit that minimizes the distance travelled / travelling cost / travelling time. . . Choose a path and compute its length. Repeat this for all paths and keep the smallest. How many paths are there ? Suppose there are p(n) paths for n cities. Given a path, add a new city. There are n possibilities. So p(n + 1) = n × p(n), i.e., p(n + 1) = n × (n − 1) × (n − 2) × · · · × 1 = n!.

19 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Examples of P and NP problems (3) Example (Travelling Salesman Problem) A salesman must visit n cities and come back to its starting point. Find the order of visit that minimizes the distance travelled / travelling cost / travelling time. . . Choose a path and compute its length. Repeat this for all paths and keep the smallest. How many paths are there ? Suppose there are p(n) paths for n cities. Given a path, add a new city. There are n possibilities. So p(n + 1) = n × p(n), i.e., p(n + 1) = n × (n − 1) × (n − 2) × · · · × 1 = n!. This algorithm is exponential in n: O(nn). Maybe this problem is not in P? 19 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Did we try hard enough? Suppose you work in a company. Your boss asks you to solve problem X . You don’t find any polynomial solution. What do you want to tell your boss?

20 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Did we try hard enough? Suppose you work in a company. Your boss asks you to solve problem X . You don’t find any polynomial solution. What do you want to tell your boss? 1. I can’t solve it because I’m too stupid.

20 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Did we try hard enough? Suppose you work in a company. Your boss asks you to solve problem X . You don’t find any polynomial solution. What do you want to tell your boss? 1. I can’t solve it because I’m too stupid. 2. I can’t solve it because the problem is too difficult.

20 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Did we try hard enough? Suppose you work in a company. Your boss asks you to solve problem X . You don’t find any polynomial solution. What do you want to tell your boss? 1. I can’t solve it because I’m too stupid. 2. I can’t solve it because the problem is too difficult. 3. I can’t solve it, but many bright people cannot solve it too!

20 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Did we try hard enough? Suppose you work in a company. Your boss asks you to solve problem X . You don’t find any polynomial solution. What do you want to tell your boss? 1. I can’t solve it because I’m too stupid. 2. I can’t solve it because the problem is too difficult. 3. I can’t solve it, but many bright people cannot solve it too! NP-complete problems help you say the third answer. These are NP problems that nobody knows how to solve in polynomial time. TSP is NP-complete.

20 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

NP-complete problems NP-complete problems are all “equivalent:” if a polynomial solution were to be found for one of them, they would all be in P. But this is difficult. . . To prove your problem X is also NP-complete, i.e., “difficult,” you need to reduce it to an existing NP-complete problem.

21 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

NP-complete problems NP-complete problems are all “equivalent:” if a polynomial solution were to be found for one of them, they would all be in P. But this is difficult. . . To prove your problem X is also NP-complete, i.e., “difficult,” you need to reduce it to an existing NP-complete problem. Starting from 3-SAT, many problem were found NP-complete: ˆ TSP ˆ graph coloring ˆ bin packing ˆ knapsack problem ˆ etc. F. Bouchez (IISc)

21 / 24 All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

NP-complete problems NP-complete problems are all “equivalent:” if a polynomial solution were to be found for one of them, they would all be in P. But this is difficult. . . To prove your problem X is also NP-complete, i.e., “difficult,” you need to reduce it to an existing NP-complete problem. Starting from 3-SAT, many problem were found NP-complete: ˆ TSP ˆ graph coloring

Big question

ˆ bin packing

Does P = NP?

ˆ knapsack problem ˆ etc. F. Bouchez (IISc)

21 / 24 All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Outline

What is computing? Decidability vs. undecidability P vs. NP problems Conclusion

22 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

Conclusion

To remember, in the order of importance. . . : ˆ Computer scientists do not repair computers. ˆ We are interested in computation problems. ˆ Some problems cannot be computed, they are undecidable. ˆ Decidable problems can be in two categories: ˆ Polynomial problems: we know a polynomial algorithm. ˆ NP-complete problems: we know an exponential algorithm, and nobody knows if there exists a polynomial algorithm.

23 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

What is computing?

Decidability vs. undecidability

P vs. NP problems

Conclusion

That’s all for now

24 / 24 F. Bouchez (IISc)

All about computer science

20/11/2009

des documents recommandant

[image: alt]

Engineering - Florent Bouchez Tichadou

Apr 22, 2009 - well-known benchmark suite of graphs as the basis for experiments. The dissertation ... The use of automated theorem provers has become successful, particularly in the fields of type checking ... dissertation, the answer is No.

[image: alt]

Pascal - Florent Bouchez Tichadou

-compound statement begin x := y; y := z end. -procedure call ... Comments: A comment in Pascal- is an arbitrary sequence of characters enclosed in braces { }.

[image: alt]

Tirex - Florent Bouchez Tichadou

[18], and in an experimental Just-In-Time (JIT) compiler for the. Common ... discuss the integration Tirex, our extended version of MinIR, in our toolchain in ...

[image: alt]

Curriculum Vitae - Florent Bouchez Tichadou

2010â€“Mar. 2013. Post-Doctoral fellow at the Indian Institute of Science (IISc) of Bangalore, India, ... Delaware University, USA, Part 5 of LCPC tutorial on SSA. Oct. 2009 ... 2011. Skills. Programming: C, Pascal, Perl, Ruby, OCaml, TEX/LATEX. Work

[image: alt]

Register Allocation - Florent Bouchez Tichadou

Basic block technique (Belady). Integer Linear Programming (George & Appel). Florent Bouchez (LIP â€” ENS Lyon). Register allocation. 18 August 2008. 17 / 32 ...

[image: alt]

Register Allocation - Florent Bouchez Tichadou

Spill is difficult, hence heuristics are righteously used. Some good existing heuristics: Basic block technique (Belady). Integer Linear Programming (George ...

[image: alt]

Advanced Register Allocation - Florent Bouchez Tichadou

Chaitin et al. model. Interference graph k j g h f e m b c d. Live-ranges g h f e m b ... Conclusion. Register allocation is NP-complete a b d c return a + x. Ba switch.

[image: alt]

Advanced Register Allocation (2) - Florent Bouchez Tichadou

Apr 16, 2009 - In incremental coalescing, the graph must stay greedy-k-colorable at each step. Problem. It may be possible that one requires more than one ...

[image: alt]

GPGPU and Matlab - Florent Bouchez Tichadou .fr

Jan 8, 2010 - GPUlib2 is available under the General Public License (GPL), and is a the assignment â€œC2p29_PSET4_1bâ€� from a course at the MIT [3], and.

[image: alt]

Speeding up computations: bring the GPUs - Florent Bouchez Tichadou

Nov 20, 2009 - Graphic Processing Unit. This is where we jump to the Post-Doc presentation of Sept. 12th. F. Bouchez (IISc). HPC and GPUs. 20/11/2009. 5/7 ...

[image: alt]

SSA Destruction after Register Allocation - Florent Bouchez Tichadou

Properties of an RTG: â€¢ Maximum in-degree equals 1. â€¢ 3 types of RTG (tree, cycle,.) F. Bouchez (IISc â€“ India). How to get the hell out of SSA? LCPC '09. 16 / 30 ...

[image: alt]

AA Tirex-based SSA Interpreter - Florent Bouchez Tichadou

2001] (an IR in the SSA form) for compilation and Java byte-code for ... 2. THE TIREX REPRESENTATION. The Tirex intermediate representation ... and in an experimental Just-In-Time (JIT) compiler for the Common ... libyaml to tokenize the Tirex file.

[image: alt]

On the Complexity of Register Coalescing - Florent Bouchez Tichadou

aggressive coalescing as no register constraint is taken into account in this In other words, borrowing the subtle title of Cytron and Fer- rante's paper [15] ...

[image: alt]

A. Darte and F. Bouchez and F. Rastello - Florent Bouchez Tichadou

Architectural subtleties: specific registers (sp, fp, r0), variable affinities (auto-inc), register pairing (64 bits ops), distributed register banks, etc. â€¢ Rules of the game:.

[image: alt]

computer science

The fee code for users of the Transactional Reporting Service is Colin Ware. University of New Hampshire. Alan Watt. University of Sheffield. Nigel P. The notion that â€œcomputer science = programmingâ€� had become wholly inadequate to ..

[image: alt]

Computer Science Student

of a Linux mail server cluster (for about 1.000.000 users). Skills: Software development: C, C++, Java, SQL, dynamic Web (PHP, RAILS, J2EE), GTK, Ocaml,.

[image: alt]

Computer Science I

Jan 30, 2006 - CS 135 - Computer Science I - 1. Introduction ... Writing Pseudocode c. First Elements of C++. âœ“ The basics of a C++ program ... the language.

[image: alt]

Computer Science Student .fr

2010 Project Leader : Industrial Project involving ESIAL and Atos Worldline ... project at LORIA (www.loria.fr) : Firewall analysis using tree automata in JAVA ... functions (reports, statistics, exports) to a resource-management system - Rapla.

[image: alt]

Computer Science I

b. While Loops c. Do/While Loops d. For Loops. âœ“ General form of a for loop. âœ“ Examples of for loops ... General form of a for loop. âž¢ (Fun?) facts about for loops ... on the body. â†’ this is legal syntax but not necessarily good programming!

[image: alt]

Computer Science I

Feb 15, 2006 - Problem: convert pounds to kilograms ... The weight-converter program reading from the keyboard and writing to ... foo.open("data_report.txt");.

[image: alt]

internship in computer science

Email : . Passionate about science ... level in English and I would like to start my career abroad. I'll know motivate the team in ...

[image: alt]

Resume Education Work experience Computer ... - Florent LAGAYE

Website: http://florent.lagaye.free.fr. Resume. Education. 2007 2008. MS of Imagery and virtual reality at the Ensimag (one of the leading engineering schools.

[image: alt]

Lecture Notes in Computer Science:

device itself to enhance the evaluation of haptic benefits ... tools, we want to describe a methodology, based on physical parameters com- ing from the haptic ...

[image: alt]

Guillaume Chereau, Computer Science Engineer

Systems: openembedded, scratchbox, creation of applications for arm systems, Android,. Maemo, Java2ME. Languages. French: Mother Tongue. English: Fluent.

×
Report Computer Science - Florent Bouchez Tichadou

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

