

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Computer Architecture .fr

Computer Architecture. Â© 2004 R. LÃ³rencz ... Control hazard normally present in the loop in scalar processing are nonexistent Parallel & pipeline computing ...

 Télécharger le PDF

 353KB taille
 4 téléchargements
 341 vues

 commentaire

 Report

10. Lecture

1-1

Computer Architecture 10. Lecture Vector Processors Róbert Lórencz

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-2

Contents • • • • • • •

Basic DLXV Vector instruction types Vector addressing Vector pipeline Vector execution time Vector performance equations

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-3

Problems with conventional approach Limits to conventional exploitation of ILP: 1) Pipelined clock rate: at some point, each increase in clock rate has corresponding CPI increase (branches, other hazards) 2) Instruction fetch and decode: at some point, its hard to fetch and decode more instructions per clock cycle 3) Cache hit rate: some long-running (scientific) programs have very large data sets accessed with poor locality; others have continuous data streams (multimedia) and hence poor locality Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-4

Vector processor – basic 1 • Coprocessor specially designed to perform vector computations • Often used in vector supercomputers • Provide high level operations on vectors eq. to an entire loop (e.g. 64-element FP vector, a # of fetched instruction greatly reduced • Vector instructions: computation of each element of result is independent on other elements → very deep pipeline possible without data hazards • Vector elements have a known access pattern → an interleaved MM works well instead of cache • MM latency seen only once for the entire vector, the interleaved memory more expensive then caches • Control hazard normally present in the loop in scalar processing are nonexistent Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-5

Vector processor – basic 2 • Vector pipeline – can be attached to any scalar CPU – Arithmetic operation – Memory accesses – Effective address calculations on the individual elements of vector • Multiple vector operations at the same time available with high-end VPs Basic vector architecture VP = ordinary pipelined unit + vector unit – Memory – memory VP – not successful architecture – Vector - register processors (L/S architecture)

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-6

Vector processor – architecture DLXV Main memory

Vector L/S unit

One word / clock + init. lat. Vector registers 8 registers • 16 R ports • 8 W ports Each register • 64 elements • 64 b / elements (DP) Scalar registers 32 GP registers 32 FP registers • Multiple R/W ports Computer Architecture

FP add/subtract FP multiply FP divide Integer Logical

Cross-bar © 2004 R. Lórencz

10. Lecture

1-7

Vector processor – components • Vector Register: fixed length bank holding a single vector – –

Has at least 2 read and 1 write ports Typically 8-32 vector registers, each holding 64-128 64-bit elements

• Vector Functional Units (FUs): fully pipelined, start new operation every clock –

Typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), integer add, logical, shift; may have multiple of same unit

• Vector Load-Store Units (LSUs): fully pipelined unit to load or store a vector; may have multiple LSUs • Scalar registers: single element for FP scalar or address • Cross-bar to connect FUs , LSUs, registers

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-8

Vector processor – vector-register architecture Characteristics of recent processors Processor

Year

Clock [MHz] Regs

Elements

FUs LSUs

Cray 1

1976

80

8

64

6

1

Cray C-90

1991

240

8

128

8

4

Convex C-4

1994

135

16

128

3

1

Fuj. VP300

1996

100

8-256

32-1024

3

2

NEC SX/4

1995

400

8+8K

256 var.

16

8

Cray J-90

1995

100

8

64

4

Cray T-90

1996

∼500

8

128

8

4

FP add, FP multiply, FP reciprocal, integer add, 2 logical shift, population cont/parity Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-9

Vector processor – vector instruction types 1 Vector instruction types for register-based, pipelined machines 1. vector - vector instructions, 1 or 2 operands V2 = sin(V1) f1: Vi → Vj f2: Vi x Vj → Vk V3 = V1 + V2 2. vector - scalar instructions f3: s x Vi → Vj V2 = s.V1 3. vector - memory instructions f5: M → V f4: V → M 4. vector reduction instructions Max, min, sum, mean value f6: Vi → s f7: Vi x Vk → s Scalar product s = V1 . V2 5. gather instructions f8: M x V0 → V1 Nonzero elements of sparse vector V1 are fetched from M using indices in V0 Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-10

Vector processor – vector instruction types 2 6. scatter instructions f9: V1 x V0 → M Elements of dense vector V1 are stored into a sparse vector in M (scattered) using indices in V0 7. masking instructions Compress/expand vector to a shorter/longer index vector f10: V0 x Vm → V1 Vector - Vector Vj Vk Reg. Vi

Reg. Vi

Vector - Scalar

…

…

…

…

…

Scalar reg. s

1 2 …n

Functional unit Computer Architecture

Vj

1 2 …n

Functional unit © 2004 R. Lórencz

10. Lecture

1-11

Vector processor – vector instruction types 3 Gather V1

Mem. data/ addr.

4

600

200

100

2

400

300

101

6

250

400

102

0

200

500

103

A0

600

104

100

100

105

250

106

VL reg. Vector - memory Reg. V Load

Store

Access pipes

Computer Architecture

…

Memory

4

Base address

V0

© 2004 R. Lórencz

10. Lecture

1-12

Vector processor – vector instruction types 4 Masking

Scatter VL reg.

V0

V1

Mem. data/ addr.

4

600

200

100

2

400

x

6

250

0

200

VL reg. V0 (tested) V1 (result) 0

01

101

20

03

400

102

0

06

x

103

5

07

A0

600

104

0

100

x

105

250

106

4

Base address

Computer Architecture

8

11001010 VM reg.

0 24 13

© 2004 R. Lórencz

10. Lecture

1-13

Vector processor – DLXV vector instructions 1 Arithmetic Instr.

Operands

Operation

Comment

ADDV

V1,V2,V3

V1=V2 + V3

vector + vector

ADDSV

V1,F0,V2

V1=F0 + V2

scalar + vector

MULTV

V1,V2,V3

V1=V2 x V3

vector x vector

MULSV

V1,F0,V2

V1=F0 x V2

scalar x vector

SUBV

V1,V2,V3

V1=V2 – V3

vector – vector

SUBVS

V1, V2, F0

V1=V2 – F0

vector – scalar

SUBSV

V1,F0,V2

V1=F0 – V2

scalar – vector

DIVV

V1,V2,V3

V1=V2 / V3

vector – vector

DIVVS

V1, V2, F0

V1=V2 / F0

vector – scalar

DIVSV

V1,F0,V2

V1=F0 / V2

scalar – vector

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-14

Vector processor – DLXV vector instructions 2 Load / store Instr.

Operands

Operation

Comment

LV

V1,R1

V1=M[R1..R1+63]

load, stride=1

LVWS

V1,(R1,R2)

V1=M[R1..R1+63xR2]

load, stride=R2

LVI

V1,(R1,V0)

V1=M[R1+V0(i),i=0..63]

indir.("gather")

SVWS

(R1,R2), V1

M[R1..R1+63xR2] = V1

store, stride=R2

SVI

V1,(R1,V0)

M[R1+V0(i),i=0..63] = V1 indir.(“scatter")

CVI

V1,R1

V1 =compr((i*R1) & VM) create index vector

MOVI2S

VLR,R1

Vec. Len. Reg. = R1

set vector length

MOVS2I

R1,VLR

R1 = Vec. Len. Reg.

set R1 = vector length

MOV

VM,R1

Vec. Mask = R1

set vector mask

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-15

Memory operations - addressing Load/store operations move groups of data between registers and memory 3 types of addressing • Unit stride = fastest • Non-unit (constant) stride i,j =1,6 • Indexed (gather-scatter) – Good for sparse arrays of data Vector stride Suppose adjacent elements not sequential in memory do 10 i = 1,100 do 10 j = 1,100 A(i,j) = 0.0 do 10 k = 1,100 10 A(i,j) = A(i,j)+B(i,k)*C(k,j) Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-16

Memory operations – vector stride 1 • •

Either B or C accesses not adjacent (800 bytes between) Stride: distance separating elements that are to be merged into a single vector (caches do unit stride) → LVWS (load vector with stride) instruction

•

Strides → can cause bank conflicts (e.g., stride = 32 and 16 banks) • v[0] = M[x] • v[1] = M[x+1] • … • v[n-1] = M[x+n-1]

Unit stride x

v[0] v[4]

v[1] v[5]

v[2] v[6]

v[3] v[7]

Memory banks Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-17

Memory operations – vector stride 2 Constant stride v[0] = M[x] x v[1] = M[x+s] … v[n-1] = M[x+(n-1)*s]

S=2 v[0] v[2] v[4] v[6]

v[1] v[3] v[5] v[7] Memory banks

Example: 16 mem. modules, read latency = 12 clock cycles to read 64-element vector with a) stride = 1 and b) stride = 32 Solution: a) It takes 12 + 63 = 75 clock cycles b) It takes 12 x 64 = 768 clock cycles ← every access collides with previous one Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-18

DAXPY loop Y = a x X + Y - scalar vs. vector Assuming vectors X, Y are length 64

600 instructions executed • MULD must wait for LD • ADDD must wait for MULD • SD must wait for ADDD

LD ADDI lp: LD MULTD LD ADDD SD ADDI ADDI SUB BNZ

DLX code F0,a R4,Rx,#512 F2, 0(Rx) F2,F0,F2 F4, 0(Ry) F4,F2, F4 F4 ,0(Ry) Rx,Rx,#8 Ry,Ry,#8 R20,R4,Rx R20,lp

;last address to ld ;load X(i) ;a*X(i) ;load Y(i) ;a*X(i) + Y(i) ;store into Y(i) ;inc. index to X ;inc. index to Y ;compute bound ;check if done

DAXPY: small fraction of the Linpack benchmark, double precision Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-19

DAXPY loop Y = a x X + Y - scalar vs. vector DLXV code 64 operation vectors +

LD

F0,a

;load scalar a

no loop overhead

LV

V1,Rx

;load vector X

also

MULTS

V2,F0,V1 ;vector-scalar mult.

64x fewer pipeline hazards

LV

V3,Ry

ADDV

V4,V2,V3 ;add

SV

Ry,V4

DLX

;load vector Y ;store the result

vs. DLXV

578 (2+9*64) vs. 321 (1+5*64) ops 1.8x 578 (2+9*64) vs. 6 instructions 96x

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-20

Vector pipeline 1

• Without data hazards - stalls • No special HW for solving stalls Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-21

Vector pipeline 2 Parallel computing

• Without data hazards - stalls • All or part is executed parallel Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-22

Vector pipeline 3 Parallel & pipeline computing

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-23

Vector pipeline 4 Chaining The concept of forwarding extended to vector register MULV V1, V2, V3 ;ADDV can start as soon as V1(1) available ADDV V4, V1, V5

MULV

ADDV

Non-chaining Chaining

Short representation

MULV ADDV MULV

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-24

Vector execution time 1 • • • • • •

Time = f(vector length, data dependencies, struct. hazards) Initiation rate: rate that FU consumes vector elements (= number of lanes; usually 1 or 2 on Cray T-90) Convoy: set of vector instructions that can begin execution in same clock (no struct. or data hazards), convoys do not overlap Chime: approx. time for a vector operation m convoys take m chimes; if each vector length is n, then they take Approx. m x n clock cycles (ignores overhead; good approx. for long vectors) 1: LV

V1,Rx

;load vector X

2: MULV V2,F0,V1 ;vector-scalar mult. LV

V3,Ry

;load vector Y

3: ADDV V4,V2,V3 ;add 4: SV

Ry,V4 DLXV code

Computer Architecture

;store the result Convoys without chaining © 2004 R. Lórencz

1-25

Vector execution time 2

10. Lecture

Assume: • The rate at which a vector unit consumes operands and produced results = 1/clock cycle • Compound vector function (a convoy) is executed approx. in n clock cycles • Chaining of data-depended instructions Start up time (due to pipeline latency) convoy 1 Unit cycles convoy 2 L/S 12 (1 x L/S access pipes) convoy 3 12 7 n-1 = 63 ADD 6 12 6 n-1 = 63 MULT 7 Convoys with chaining 12 n-1 = 63 DIV 20 One memory pipe only 1: LV V1,Rx MULV V2,F0, V1 2: LV

V3,Ry

3: SV

Ry,V4

ADDV

V4,V2,V3

36 + 13 + 3 x n = 238 clocks

→ 238/n = 3.72 clocks / element Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-26

Vector execution time 3 1: LV

V1,Rx

MULV

V2,F0, V1

LV

V3,Ry

ADDV

V4,V2,V3

SV

Ry,V4 2 load pipes & 1 store pipe

convoy 1 12 7 n-1 = 63

Convoys with chaining T(n) = 12 + 7 + 6 +12 + n = 37 + n →100/n = 1.56 clocks / element

lim T (n) / n = 1 n →∞

Computer Architecture

12 6 n-1 = 63

12 n-1 = 63

© 2004 R. Lórencz

10. Lecture

1-27

Vector length • • •

• •

What to do when vector length is not exactly 64? May differ from DLXV vector register length (64) Vector-length register (VLR) controls the length of any vector operation, including a vector load or store. (cannot be > the length of vector registers) do 10 i = 1, n 10 Y(i) = a * X(i) + Y(i) Don't know n until runtime! may change during execution n > max. vector length (MVL)?

•

Vector longer then MVL → strip mining technique – Vector segmented, so that each vector operation is done for size ≤ MVL

•

Suppose Vector Length > Max. Vector Length (MVL)?

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-28

Vector length – strip mining •

Strip mining: generation of code such that each vector operation is done for a size S to the MVL

•

1st loop do short piece (n mod MVL), rest VL = MVL low = 1 VL = (n mod MVL) do 1 j = 0,(n / MVL)

10

1

do 10 i = low,low+VL-1 Y(i) = a*X(i) + Y(i) continue low = low+VL VL = MVL continue

/*find the odd size piece*/ /*outer loop*/ /*runs for length VL*/ /*main operation*/ /*start of next vector*/ /*reset the length to max*/

Vector segments – 1. segment: (n mod MVL) elements

→ n/MVL segments: MVL elements each Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-29

Vector performance equation f = clock frequency, n = vector length, c = # of convoys TSTART = vector start up cost, TLOOP = strip mining overhead The # of clock cycles for a vector of length n

T(n) = ⎡ n /MVL⎤ x (TSTART + TLOOP) + n x c Example: DAXPY on DLXV 200 MHz, n = 200, TSTART = 37, TLOOP = 15, c = 3 Solution:

T(n) = ⎡ n /64⎤ x (37 + 15) + n x 3 = 808 taktů → 808*5 ns = 4.04 µs 808/n = 4.04 clocks / element Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-30

Common vector metrics 1 R∞: MFLOPS rate on an infinite-length vector Vector “speed of light” Real problems do not have unlimited vector lengths, and the start-up penalties encountered in real problems will be larger (R∞ is the MFLOPS rate for a vector of length n) N1/2: The vector length needed to reach one-half of R∞ A good measure of the impact of start-up NV: The vector length needed to make vector mode faster than scalar mode – Measures both start-up and speed of scalars relative to vectors, quality of connection of scalar unit to vector unit

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-31

Conditional execution Suppose: do 100 i = 1, 64 if (A(i) .ne. 0) then A(i) = A(i) – B(i) endif 100 continue Vector-mask control takes a Boolean vector: – When vector-mask register is loaded from vector test, vector instructions operate only on vector elements whose corresponding entries in the vector-mask register are 1.

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-32

Vector Advantages Easy to get high performance; n operations: – Are independent – Use same functional unit – Access disjoint registers – Access registers in same order as previous instructions – Access contiguous memory words or known pattern – Can exploit large memory bandwidth – Hide memory latency (and any other latency) Scalable (get higher performance as more HW resources available) Compact: Describe n operations with 1 short instruction (v. VLIW) Predictable (real-time) performance vs. statistical performance (cache) Multimedia ready: choose N * 64b, 2N * 32b, 4N * 16b, 8N * 8b Mature, developed compiler technology Vector disadvantage: Out of Fashion ?! Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-33

Applications Limited to scientific computing? • Multimedia processing (compress., graphics, audio synth, image proc.) • Standard benchmark kernels (Matrix Multiply, FFT, Convolution, Sort) • Lossy compression (JPEG, MPEG video and audio) • Lossless compression (Zero removal, RLE, Differencing, LZW) • Cryptography (RSA, DES/IDEA, SHA/MD5) • Speech and handwriting recognition • Operating systems/Networking (memcpy, memset, parity, checksum) • Databases (hash/join, data mining, image/video serving) • Language run-time support (stdlib, garbage collection) • Even SPECint95 Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-34

Vector Pitfalls Pitfall: Concentrating on peak performance and ignoring start-up overhead: NV (length faster than scalar) > 100! Pitfall: Increasing vector performance, without comparable increases in scalar performance (Amdahl's Law) – Failure of Cray competitor from his former company Pitfall: Good processor vector performance without providing good memory bandwidth – MMX?

Computer Architecture

© 2004 R. Lórencz

10. Lecture

1-35

Vector Summary •

Alternate model accommodates long memory latency, doesn’t rely on caches as does Out-Of-Order, superscalar/VLIW designs

•

Much easier for hardware: more powerful instructions, more predictable memory accesses, fewer hazards, fewer branches, fewer mispredicted branches, ...

•

What % of computation is vectorizable?

•

Is vector a good match to new apps such as multimedia, DSP?

Computer Architecture

© 2004 R. Lórencz

des documents recommandant

[image: alt]

Computer Architecture : A Quantitative Approach

acquired by Silicon Graphics in 1991, MIPS Technologies became an independent R3,L3. ;branch b3 (aa==bb). Let's label these branches b1, b2, and b3.

[image: alt]

Computer Architecture : A Quantitative Approach

Distributing the power, removing the heat, and preventing hot spots have manual since it must include pipeline effects, cache misses, and any other mem- or a different interconnection technology, which is less scalable than the glo-.

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

should demonstrate a reduced API into the component itself. The technology Specific%20Software%20Architectures%20(DSSA).pdf >. Duffy, R.

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

A - 1.1.1.3.1.3.1.1.11 Manipulate Object Resources B - 1.2.2.2.3.1.1 Game Object Component Exported Classes............. 252 The book uses clear English to explain w connect to unique alter egos, and began the â

[image: alt]

Computer Science Student .fr

2010 Project Leader : Industrial Project involving ESIAL and Atos Worldline ... project at LORIA (www.loria.fr) : Firewall analysis using tree automata in JAVA ... functions (reports, statistics, exports) to a resource-management system - Rapla.

[image: alt]

WebSphere Application Server Architecture .fr

Files. Application Server. Admin console. C:\> wsadmin. Web-based administrative console wsadmin command-line client. RMI/IIOP. HTTP(S). Admin. MBeans.

[image: alt]

Computer Architecture and Organization Chapter 1 â€“ Introduction

Chapter 1 - Introduction. Computer Architecture and Organization by M. ... and V. Heuring. Cylinder Music Box. â€¢ Victorian Swiss cylinder music box, dated 1862.

[image: alt]

Application Architecture for .NET: Designing Applicationsfr

introduced into a retrieval system, or transmitted in any form or by any means. (electronic, mechanical (such as communication format, data schema, authentication mechanism, and so on). an order, and then resume the checkout process at a

[image: alt]

Document COMPUTER SHOPPER - July 1 .fr

the Web â€“ a password â€“ to browse â€“ a search â€“ to download â€“ a browser â€“ to navigate â€“ a homepage â€“ a link. 1. Some managers look down on their female counterparts: mÃ©priser paradise tat or man-of-the-world 'sophisticatio

[image: alt]

Human-Computer Interaction Interaction Homme-Machine .fr

Interaction engineering. â€¢ Design Menus. â€¢ Pointers. â€¢ Benefits. â€“ Soft learning curve. â€“ Standard environments ... Menu, window icon, keyboard shortcuts.

[image: alt]

Computer Safety, Reliability, and Security .fr

Aug 15, 2012 - Assessing Software Interference Management When Modifying in other tools, such as ASCE, are parsed using Java DOM XML libraries. VIATRA2 VIATRA2 ... and subsequently converted5 to portable document format (PDF). associate

[image: alt]

RUMIANO Damien Ensimag Projects Computer Skillsfr

speciality: Images and Virtual Reality. Sport : swimming ... Matlab, Scilab, Maple, R. MathÃ©matics ... Image Processing, 3D Modeling and animation,. Augmented ...

[image: alt]

S Architecture

Feb 2, 2006 - calls is not critical to the programmer, only to the O/S designer. 2/2/2006. CS 446/646 - Principles of Operating Systems - 1. Introduction. 102 ...

[image: alt]

MARIA JOÃƒO PITA Â¶ architecture and urban designfr

basic computer-related OS: Windows and Macintosh softwares: Office; CAD: Autocad, ... Exercise - The abandonment of the industrial vocation and the affirmation of 7 different climates, 7 different groups of 150 families = 1 low cost solution.

[image: alt]

Eurocopter network architecture and security rules. Technicalfr

o Double connection on workstation Internal network-Internet direct access is strictly forbidden without protection of internal network from unauthorized.

[image: alt]

Secure architecture in embedded systems: an overview .fr

Rainer Buchty, Nevin Heintze, and Dino Oliva, Cryptonite A Programmable Crypto Processor Architecture for. High-Bandwidth Applications, 2004.

[image: alt]

An Architecture based on Linked Data technologies for thefr

initiatives can retain some control over their information of materials and courses in a non-proprietary format. LOCWD ec01.pdf. Problems: Getting Started. Lab http://ocw.mit.edu/courses/electrical- ... Tutorial http://ocw.uc3m.es/ingenieria-.

[image: alt]

Nemo Wide Dive Computer - Dive Computer Wizard

1 INTrOduCTION. 3. 1.1 Glossary. 3. 1.2 oPEraTING MoDEs. 4. 1.3 UsEr-rEPlaCEaBlE BaTTEry. 4. 1.4 CoNNECTING NEMo WIDE To a PC or MaC. 4.

[image: alt]

Computer Notes

In a backcross breeding program aimed at introgressing a ''target'' gene from a ''donor'' line into the genomic back- ground of a ''recipient'' line, an important.

[image: alt]

COMPUTER INTERFACES

2 A power transformer. I feed the output to a bridge ... and provide some isolation. U2 is a 5-V powered ... teristic makes it easy to fully isolate the radio and the ...

[image: alt]

Computer Notes

issue is to reduce the length of the intact chromosomal segment of donor type dragged along around the target gene. (linkage drag), because this segment.

[image: alt]

Computer Networks

Oct 12, 1998 - Principles of application layer protocols ... success after several days (often 5 days), the server removes the 3 Jul 01 15:17:39 GMT.

[image: alt]

Project: Computer engineer role in game development .fr

ActionScript/Flash development of the game UI (menu, HUDs). Year 2009â€“2010 School project: ... Writing/reviewing works for the French videogames site Puissance Nintendo. Summer 2007 ... 20 years of classical guitar. Qualifications.Missing:

[image: alt]

Enhancement of Human Computer Interaction with facialfr

emotional displays are often referred to as basic emotions. They are recognized by course, these methods will be run on more subjects to test their consistency. and Machine Intelligence, IEEE Transactions on 23(2):. 97-115. Tingfan, W.

×
Report Computer Architecture .fr

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

