Chapter 05: Hyperbolic Equations with Two Space Variables

5.1.1. Problems in Cartesian Coordinates. The wave equation with two space variables in the rectangular Cartesian system of coordinates has the form. ¥. 2¦. ¥§.
1MB taille 4 téléchargements 267 vues
Chapter 5

Hyperbolic Equations with Two Space Variables 2

5.1. Wave Equation



=

2

2 

2



5.1.1. Problems in Cartesian Coordinates The wave equation with two space variables in the rectangular Cartesian system of coordinates has the form    2

 

2

2



2

=

2

+ 

2

2

.

5.1.1-1. Particular solutions and some relations. 1 . Particular solutions:

  ( , , )=

  ( , , )=

  ( , , )=

  ( , , )=

  ( , , )=





exp  

sin( 

1

sin( 

1



sinh(  sinh( 

1,

2

 

+

1 ) sin(  2

+

1 ) sin(  2



+

1





 12 +  22  ,

+

2 ) sin 

+

2 ) cos 



+

1 ) sinh(  2

+

1

 ( , , ) =  ( sin  +

where  , 



+

1

1 ) sinh(  2





+





 12 +  22  ,





2 ) sinh 



2 ) cosh 

cos  +  ) +  ( sin  +





 12 +  22  ,   12 +  22  ,   12 +  22  ,  cos  −  ),

 2 ,  1 ,  2 , and  are arbitrary constants, and  (  ) and  (  ) are arbitrary functions.

2 . Particular solutions that are expressed in terms of solutions to simpler equations:

  ( , , ) = 

  ( , , )= 

  ( , , ) = 

  ( , , )= 





cosh( 



) +  sin( 

cos( 







) +  sinh( 





)  ( , ),





where 

)  ( , ),

where



cos(  ) +  sin(  )$ ( , ), 





where



cosh(  ) +  sinh(  )  ( , ),

 ( , , ) = exp 

 

2'

  ( , ( ), ( =

where

 )

2

,

where

 !"!  !"!  # #  # #  *

 = 2  =

2

 # #  # #

 +

 %%

 +

 %%  # #

 ='

 −  2  2 ,  +

2 2



(1)

 ,

(2)

2

(3)

 = −(  &  )  , 2

 = ( &  )  ,

(4)

 .

(5)



For particular solutions of equations (1) and (2) for the function  ( , ), see the Klein–Gordon

equation 4.1.3. For particular solutions of equations (3) and (4) for the function  ( , ), see Subsection 7.3.2. For particular solutions of the heat equation (5) for the function  ( , ( ), see Subsection 1.1.1.

© 2002 by Chapman & Hall/CRC Page 341

3 . Fundamental solution: +





( , , )= where - =



2

+



,



(

−- ) 

2.  / 

2 2

−-

2

, ,

1 for  ≥ 0, 0 for  < 0,

( ) = 0

2.

4 . Infinite series solutions that contain arbitrary4 functions of the space variables: 4









354



 ( , , ) = 1 ( , )+ 2 =1



 9 8  53 4  ( , , ) = ( , )+ 2



8

(  )2 (26 + 1)! 7

=1





(  )2 4 1 ( , ), (26 )! 7 4 8

7

≡ 

2 2



+ 

2 2

,



( , ),

where 1 ( , ) and ( , ) are any infinitely functions. The first solution satisfies

 ! differentiable

 ( , , 0) = 1 ( , ),  the initial conditions to8 the

 !

8 ( , , 0) = 0 and the second solution



initial conditions  ( , , 0) = 0,  ( , , 0) = ( , ). The sums are finite if 1 ( , ) and ( , ) are bivariate polynomials.

: )  ( , , ) = Im = (> ). and (6)





Here, = (> ) is an arbitrary analytic function of the complex argument > related to the variables ( , , ) by the implicit relation 



 − ( − 0 )> + ( − 0 ) / 1 − > 2 = ? (> ), (7)



where ? (> ) is any analytic function and 0 , 0 are arbitrary constants. Solutions of the forms (6), (7) find wide application in the theory of diffraction. If the argument > obtained by solving (7) with a prescribed ? (> ) is real in some domain @ , then one should set Re = (> ) = = (> ) in relation (6) everywhere in @ .

: 0, > 0, 0

= 0).

# 5.3.3-3. Domain: 0 ≤ õ ≤ ù , 0 ≤ ≤ ' . Third boundary value problem.

A circular cylinder of finite length is considered. The following conditions are prescribed: "  Y "

= ñ

=   " ñ " + 1 =[  . " −  2" = [  . " +  3" = [

#

0 (õ

, ) at

ö =0

(initial condition),

1 (õ # 1( 2 (õ 3 (õ

, ) ,ö ) ,ö ) ,ö )

ö =0 õ =ù #

(initial condition), (boundary condition), (boundary condition), (boundary condition).

#

at at at at

#

=0 ='

#

The solution " (õ , , ö ) is determined by the formula in Paragraph 5.3.3-2 where

 #      2 # õ ò ( 2ò   0

& (õ , , ò , ó , ö ) = ù 2 »   0 ù ù 2 ù 2 +  2 )  2(   ) 0 »  =1  =1 (  1 0 2  2 # # ø  2 ç   = ù 2 + ø 21 2 + þ ,  ( ) = cos(1  ) + 1 sin(1  1 2 +  2 0

0   2 '  2 2  2= 1 3 + 1 2 +  1 + 1 22 . 1 2 2 2   + 3 2  2  2

)  (ó ) sin ügö ý ç   ÿ 0



 #

2

ý ç  

,

),

Here, the   and 1  are positive roots of the transcendental equations     ù 1 ( ) −  1  0 ( ) = 0,

tan(1 ' ) 1

= 1

 2+ 3 . 2−  2 3

# 5.3.3-4. Domain: 0 ≤ õ ≤ ù , 0 ≤ ≤ ' . Mixed boundary value problems.

1 2 . A circular cylinder of finite length is considered. The following conditions are prescribed: #

"

= 3 0 (õ , ) at

ö =0

(initial condition),

= 3 1 (õ , ) at " = [ ( # , ö ) at 1

ö =0 õ =ù #

(initial condition), (boundary condition),

 Y "  . "  . "

#

= [ 2 (õ , ö ) = [ 3 (õ , ö )

at at

#

=0 ='

(boundary condition), (boundary condition).

© 2002 by Chapman & Hall/CRC Page 373

Solution: 

" (õ , # , ö ) = 

+

2

−;

2

+;

2

Here, # 26 A? @ & (8 , , 6 , 7 , 9 ) = > 2 » '

? =1 @

»

B =0

# 3 1 (6 , 7 ) & (8 , , 6 , 7 , 9 ) : 6 : 7

4 0 ( 4 0Y 5

−;

+

# 3 0 (6 , 7 ) & (8 , , 6 , 7 , 9 ) : 6 : 7

ö 4 0( 4 05



4 0 4 0( Y

[ 1 (7 , < ) ) 

# & ( 8 , , 6 , 7 , 9 − < )* + 6

# [ 2 (6 , < ) & (8 , , 6 , 0, 9 − < ) : 6 :
0,

for 2 for



= ( G 22 - 22; + = 2  - 22 − 2 ) I  2 (=   - 2 ) − ( G 12 - 12 + = 2  - 12 − 2 ) I  2 (=   ( ( I  (=   ) = =   <  > (=   - 1 ) − G 1 <  (=   - 1 )6LK  (=   )

H  

5

(

− =   K  > (=   5

(

1)

− G 1 K  (=   -

<  (=  

1 )6

(

1 ),

),

where the <  ( ) and K  ( ) are the Bessel functions, and the =   are positive roots of the transcendental equation 5

= <  > (= -

1)

− G 1 <  (= -

1 )6

5

= K  > (= -

+ G 2 K  (= -

2)

= = K  > (= 5

5.4.2-7. Domain: 0 ≤

(

≤- ,0≤

)



)

0.

1)

2 )6

− G 1 K  (= -

1 )6

5

= <  > (= -

2)

+ G 2 <  (= -

2 )6

.

First boundary value problem.

A circular sector is considered. The following conditions are prescribed: &

(

)

(

)

= . 0 ( , ) at

 =0

(initial condition),

= . 1 ( , ) at & = 0 ( ) ,  ) at 1

 =0

=-

(initial condition), (boundary condition),

=0 ) = 0

(boundary condition), (boundary condition).

% /&

(

& &

= 0 2( ,  ) ( = 0 3( ,  )

at at

(

)

)

© 2002 by Chapman & Hall/CRC Page 384

 



Solution: & (( , ) ,  ) = %

%

03

1

0M 0

+ 1

( ) . 0 ( ,  ) ( , ,  ,  ,  ) 4  4 

0

 1

0

2

−# +#

2

−#

2

+

1 1

0

/ 1

1

1

0

0M

(

4

)

( , , , , ) =

) 2 -

0

 





1 



% %

)



(

4  4 7

=

)

( , ,  ,  ,  − 7 )9 N



8 %

(

( , ,  ,  ,  − 7 )9 : (

8 %

)

( , ,  ,  ,  ) 4  4 

34  4 7

=0

)

( , ,  ,  ,  − 7 )9 N

=

4  4 7 0

( ) + ( ,  , 7 ) ( , ,  ,  ,  − 7 ) 4  4  M 4 7 .

03

1

exp  − 12  



0 3 ( , 7 )

0

Here,

1

0 2 ( , 7 )

03

1

0

/

0M

03

0/

1

1

%

0 1 ( , 7 ) 8 %

(

. 1 (  ,  ) +  . 0 (  ,  )6

03/ 5

0M 1





<  2 O



=1

(

) <  2 O 0 (=    ) [ <  > 2 O 0 (=   - )]2 M M ) sin ? , # 2 = 2  + $ −  2E 4   M × sin ' )  * sin ' )  * , 0 0 , # 2 = 2  + $ −  2E 4

=1

(

(=  

0

where the <  2 O 0 ( ) are the Bessel functions and the =   equation <  2 O 0 (= - ) = 0.

are positive roots of the transcendental

M

M

(

5.4.2-8. Domain: 0 ≤

)

≤- ,0≤

)



0.

Second boundary value problem.

A circular sector is considered. The following conditions are prescribed: &

% /& % C & (

−1 %

&

(

−1 %

&

Solution:

M

)

(

)

 =0

(initial condition),

= . 1 ( , ) at ) = 0 1 ( ,  ) at

 =0

(initial condition), (boundary condition),

(

= 0 2( ,  )

at

= 0 3( ,  )

at

(

M (

(

= . 0 ( , ) at

)

& ( , , ) = %

%

+ 1

0M

−#

2

+#

2

03/

1

5

1/ 1

0

0/ 1

1/

0

1

0M

0

1

0M

03

1

=

)

(boundary condition), 0

(boundary condition).

(

)

( , ,  ,  ,  ) 4  4 

( ) 0 1 ( , 7 ) ( , , - ,  ,  − 7 ) 4  4 7

)

( ) 0 3 ( , 7 ) ( , ,  ,

0

1

=0

( ) 0 2 ( , 7 ) ( , ,  , 0,  − 7 ) 4  4 7

03

1

)

. 1 (  ,  ) +  . 0 (  ,  )6 0

+ # 2-

+

03

1

0M 0

=)

( ) . 0 ( ,  ) ( , ,  ,  ,  ) 4  4 

0

 1

(

03

0, 

−7 )4  4 7

( ) + ( ,  , 7 ) ( , ,  ,  ,  − 7 ) 4  4  4 7 .

© 2002 by Chapman & Hall/CRC Page 385

Here,

(

)

( , ,  ,  ,  ) = exp 

2 sin ? , $ −  2E 4  )  D +4 ) 2 2 E 4 0, $ − 

− 21 

× cos '

)

 

0

)





=0  =1

' * cos

0

(

<  2 O ( ) are the Bessel functions and the =   0  > 2 O 0 (= - ) = 0. M

where the equation
0,

Í

, 0 ≤ — ≤ . Third boundary value problem.

A circular cylinder of finite length is considered. The following conditions are prescribed: Ö Ù ÚÖ Ù Û Ö Ù ß Ö

+ Ü 1Ö

= × 0 (Õ , Ø ) at = × 1 (Õ , Ø ) at

= Ý 1(Ø , Ï ) − Ü 2 Ö = Ý 2 (Õ , Ï ) Ù ß Ö + Ü 3 Ö = Ý 3 (Õ , Ï )

Ï =0 Ï =0

(initial condition), (initial condition),

at

Õ =Þ

(boundary condition),

at at

Ø =0 Í

(boundary condition), (boundary condition).

Ø = Ö Ã Ã Ã Ê Ê The solution (Õ , Ø , Ï ) is determined by the à formula in Paragraph 5.4.3-2 where Ê ÂÃ Â Ä ( Ø ) Ä ( ) sin ¼?Ï ¿ Ã Ð Ä ½ à Æ Æ Ç Õ Ç 2 ã â ã Î Á É É â (Õ , Ø , , , Ï ) = 2 exp ¼ − 12 á Ï ½ Á . 0È 0È Ä 2 ¿ Ð Ä Þ Þ Þ Î =1 Ä =1 â Å Ã Ã Here, à à à à 2 2 2 Ç 2 2 å Ä2 á , Ð Ä = ä Ç = 2 2 + + Ò − , Æ ä Þ 2 4 ( Ü 1 Þ + Ç 2 ) 02 (Ç ) Í å Å 2 2 ã ã Ä Ü 3 +Ü 2 Ü 2 Ü 22 å Ä Ø ) + Ü 2 sin(å Ä Ø ), 2 Ä Ä ( Ø ) = cos( = + + È 1+ å 2 É ; à â å Ä å å å 2 2 2 2 Ä Ä +Ü 3 â 2 Ä 2 Ä 2 å Ä the Ç and are positive roots of the transcendental equations Í Æ Æ Ü 2+Ü 3 tan(å ) Ç 1 (Ç ) − Ü 1 Þ 0 (Ç ) = 0, = å 2 . å −Ü Ü 2 3

© 2002 by Chapman & Hall/CRC Page 388

ç =ê æ è

æè

−í ì

Í

5.4.3-4. Domain: 0 ≤ Õ ≤ Þ , 0 ≤ Ø ≤ . Mixed boundary value problems. 1 ò . A circular cylinder of finite length is considered. The following conditions are prescribed: Ö Ù ÚÖ

= × 0 (Õ , Ø ) at

=× =Ý Ù ß Ö =Ý Ù ß Ö =Ý

1 (Õ

,Ø ) 1(Ø , Ï ) 2 (Õ , Ï ) 3 (Õ , Ï )

Ö

Solution:

Ê Ù

(initial condition),

Ï =0

(initial condition), (boundary condition), (boundary condition), (boundary condition).

at at at at

Ï =0 Õ =Þ Ø =0 Í Ø = Ê

Ê

à × 0 ( , ) (Õ , Ø , , , Ï ) ö ö õ Î Î Ê 0 Ê Ê Ê Î à × 1 ( , ) + á × 0 ( , )ø ( Õ , Ø , , , Ï ) ö ö + ó 0 ô ó 0Ú õ ÷ Î Î Î Î Ê ÙÊ à ö ö ù − 2 Ý 1( , ù ) ú Ù ( Õ , Ø , , , Ï − ù )û ü ä ó 0 ó 0ô Î Ú ÎÊ Î = Ê Ê Ê Ê Ê Ú à à Í − 2 Ý 2 ( , ù ) (Õ , Ø , , 0, Ï − ù ) ö ö ù +õ 2 Ý 3 ( , ù ) (Õ , Ø , , , Ï − ù ) ö ö ù ä óÚ 0 ó 0 õ ä ó 0 ó 0õ Ê Ê Ê à + ( , , ù ) (Õ , Ø , , , Ï − ù ) ö ö ö ù . ó 0 ó 0ô ó 0õ ý Î Î Î Ê Ê þ Here, Ê Ú     à Æ Ç  Õ Æ Ç  Ø sin( Ð   Ï ) 2 −ÿ 2  Í É 0 É cos  Ë Í Ì É cos  Ë ÍÌ Î É (Õ , Ø , , , Ï ) = , Æ 2 0 2 Ð    Þ Þ Þ ) Î  =1  =0 1Å ( Ç Ö (Õ , Ø , Ï ) = Ù

0ô ó

Ï ó

Ð

where the 

=

2 Ç 2

2 2

+ ä Ì 2Ë

2

2

+ −

, 4 are zeros of the Bessel function,  0 ( ) = 0. 

 

ä





2

= 



1 for 2 for Ë Ë

= 0, > 0,

2  . A circular cylinder of finite length is considered. The following conditions are prescribed: 

= × 0 ( ,  ) at

  

= × 1 ( ,  ) at =  1 (  ,  ) at

   

=  2 ( ,  ) =  3 ( ,  ) 

at at

  





=0

(initial condition),

=0  =

(initial condition), (boundary condition),

=0 =

(boundary condition), (boundary condition).

Solution: 



( ,  ,  ) = +

+



 0  0 

2

ä

   

× 1( ,  ) + × 0( ,  )!" ( ,  ,  ,  ,  ) 

2

ä

× 0(  ,  )  (  ,  ,  ,  ,  ) 

 0  0

 0   0 

+ −



 0  0 

 0  0  0



+

,# )

 

 #

 3( 

,# ) $

 

 #

 #

.



 2( 

$ 

 

(  ,  ,  ,  ,  − # )% &

 



(  ,  ,  ,  ,  − # )% &

( ,  , # )  ( ,  ,  ,  ,  − # ) 

2

ä

 0  0

 1( 



, # )  ( ,  , ,  ,  − # )  

 #

=0



'

  

=

  



© 2002 by Chapman & Hall/CRC Page 389

Here, ( ,  ,  ,  ,  ) = 

4 

−ÿ (

*



2

2 )+*





 )

*

1

2  0 ( =0 , =1*

)

= ,

0 *



 0-

1

2 

* 

*



2 2

.

2 2

+

2

 0-

Ì 2



* 



2

/ 2

sin .

+3 −

2 4



5.4.3-5. Domain:

1



≤ ≤

2,

0≤

sin .

Ì /

 .

sin( 0

,

) 

, 0

,

,

4

are zeros of the first-order Bessel function,  1 ( ) = 0 (

where the 



Ì /

*

= 0).

0



≤ . First boundary value problem. 

A hollow circular cylinder of finite length is considered. The following conditions are prescribed: 

= =

      

,  ) at 1 (  ,  ) at 

5



=0 =0

5 0 (

=  1( ,  ) =  2( ,  )

at at

=  3 ( ,  ) =  4 ( ,  )

at at



= =  

(initial condition), (initial condition), (boundary condition), (boundary condition),

1 

2

=0 =  

(boundary condition), (boundary condition).

Solution:  

( ,  ,  ) =

2

2

2

2  0  

 

2

, )+



 0  

,# ) $

(  ,  ,  ,  ,  ) = Ì *

( ) =

> 0( ?

2 

2 * 1

)@

(

0-



−ÿ

2

)*

* A ? 

1

.

=1 , =1

− @ 0( ?

  





=

,# )

 4 (

,# ) $

'

 

(  ,  ,  ,  ,  − # )%

&



1

*

2

0-

 

(  ,  ,  ,  ,  − # )% &

( ,  , # )  ( ,  ,  ,  ,  − # ) 

?

*



1

.

 

 #

 

 #

 

 #

2

=0

= 

 

.

 #

*

*





 #

*

) 9 ( ) 9 ( ) sin *) − A  2( 78 ) 0 *

2  0 (

)>

 6

=

$ 

  1



 0 ( 78

*

(  ,  ,  ,  ,  − # )% 



 3 (

*

2 

6



2

 0  0 

)

,  )!" ( ,  ,  ,  ,  ) 

(  ,  ,  ,  ,  − # )% 



1







,# ) $

* 

5 0 ( 4

1 2

2

Here,

9

 2 (

 0  0 

2

  



2

+



 1 (

 0  0 



,  )  ( ,  ,  ,  ,  ) 





2

5 0 (

1

 5 ( 1

 0    1

+

+



 0  

2

+



2



, 7

= 

2 *1

, 0

Ì /

,



=

sin .

*

2 2 2 

?

2 1

+



Ì /

.

2 2 2

Ì

/ 2

*

sin : 0 (? ) are the Bessel functions, and the ? are positive roots of the transcendental equation @ 0 ( ? ) > 0 ( 78? ) − @ 0 ( 78? ) > 0 ( ? ) = 0.

© 2002 by Chapman & Hall/CRC Page 390

5.5. Other Equations with Two Space Variables 1.

2C B

2 B

+

C E

=

B

D

B

D

The transformation

2 F

2C B -

2 B

K

2C

+ B

G

2 B

C

+ .

H

B

C

+

I 1 B G

B

1 24

(L , M , N ) = O (L , M , # ) exp - −

J

C

.

H

+ 3 2M 2 2

3 1L

− N

+

I 2 B

.

,

= #

2

2

N

leads to the equation from Subsection 5.1.3: P

2

2C

P O

P Q

=

2

2 P

P O

L 2

2

+ P

O

M 2



R

2

2

+

4

4

2

2C

C

å =

, O

2



2

1 2 2 ( 3 + 3 ). 4 4 1 2 2

2C

–1 B = B 2 + B 2. 2 DVS B D B D B G B H Domain: − W < L < W , − W < M < W . Cauchy problem. K Initial conditions are prescribed:

2.

DTS

B

2

+

U

K , N K Solution for 1≤

N

,

X 2

c 4

where f

Y

= {d

2



2c 4

= 5 (L , M ) at N

= 0,

= Z (L , M )

N

= 0.

at

< 2: /

1 (L , M , N ) = 2[

ikj

X 2P Y

N

2−

c

=

P

P N

b

\ ] \^

2 2−e

(_ , ` ) a 5 4

2c N 2−

, d

=

b

c

_ a `



d 2

+

1 2[

\ ] \^

b

4

2c N 2−

c

_ a `

−d

2

,

( L − _ )2 + ( M − ` ) 2 ,

} is the circle with center at (L , M ) and radius

Reference: M. M. Smirnov (1975).

(_ , ` ) a Z

c 4

N

1 XVgVh

.

© 2002 by Chapman & Hall/CRC Page 391