Black Box methodology for the characterization of Sample Rate

H(ejω) the transfer function of the kernel of the system ..... How many different configurations to test in τ ∈ [0,P) ? .... rounding noise of same period iff M = KPR.
1MB taille 1 téléchargements 318 vues
Characterizing SRC S. Tassart Introduction Principles Fractional Delay Rate Convertor LTI Context Analysis

Black Box methodology for the characterization of Sample Rate Conversion systems

Examples Resampler 3/2

Conclusion

S. Tassart ST-Ericsson STS - Paris [email protected]

Digital Audio Effects 2011, Paris, Sep. 2011

Summary Characterizing SRC S. Tassart

1

Introduction

2

Principles Fractional Delay Rate Convertor LTI Context Analysis

3

Examples Resampler 3/2

4

Conclusion

Introduction Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

Summary Characterizing SRC S. Tassart

1

Introduction

2

Principles Fractional Delay Rate Convertor LTI Context Analysis

3

Examples Resampler 3/2

4

Conclusion

Introduction Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

Sample Rate Convertion Usage Characterizing SRC S. Tassart Introduction Principles Fractional Delay Rate Convertor

Definition (Wikipedia) “The process of converting a signal from one sampling rate to another”

LTI Context Analysis

Examples Resampler 3/2

Conclusion

Mix signals of different origins, e.g.: ≤16kHz Speech (narrowband, wide-band) 44.1kHz Audio (CD) 48kHz Audio (DAT, DVD) ≥96kHz Audio (Blu-Ray and a few DVD-Audio) Resynchronize signals (e.g. compensate clock drift)

Sample Rate Convertion Multirate model for ×R/P Characterizing SRC S. Tassart Introduction Principles Fractional Delay

x

↑R

u

H

v

Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

Nomenclature H : kernel of the system ↑ R : R-fold expansion ↓ P : P-fold decimation

↓P

y

Sample Rate Convertion Designing a resampler ×R/P Characterizing SRC S. Tassart Introduction

|H(ejω )|

2rb

δp

Principles

2δp

Fractional Delay Rate Convertor LTI Context

−δp

Analysis

Examples Resampler 3/2

δs

Conclusion

ωp

ωs π max(R,P)

π

ω

Sample Rate Convertion Designing a resampler ×R/P Characterizing SRC S. Tassart Introduction

|H(ejω )|

2rb

δp

Principles

2δp

Fractional Delay Rate Convertor LTI Context

−δp

Resampler 3/2

Conclusion

passband

Analysis

Examples

δs

ωp

ωs π max(R,P)

π

ω

Sample Rate Convertion Designing a resampler ×R/P Characterizing SRC S. Tassart Introduction

|H(ejω )|

2rb

δp

Principles

2δp

Fractional Delay Rate Convertor LTI Context

−δp

Analysis

Examples Resampler 3/2

δs

Conclusion

ωp

ωs π max(R,P)

stopband π

ω

Sample Rate Convertion Designing a resampler ×R/P Characterizing SRC S. Tassart Introduction

|H(ejω )|

2rb

δp

Principles

2δp

Fractional Delay Rate Convertor LTI Context

−δp

Analysis

Examples Resampler 3/2

Conclusion

input bandwidth

δs

usable bandwidth ωp

ωs π max(R,P)

π

ω

Sample Rate Convertion Designing a resampler ×R/P Characterizing SRC S. Tassart Introduction

|H(ejω )|

2rb

δp

Principles

2δp

Fractional Delay Rate Convertor LTI Context

−δp

Analysis

Examples Resampler 3/2

output

δs

Conclusion

ωp

don’t care

bandwidth

ωs

π max(R,P)

π

ω

Sample Rate Convertion Design Characterizing SRC S. Tassart

What is important: Introduction

2δp passband characteristics

Principles Fractional Delay

ωp , 2rb end of passband (input signal bandwidth)

Rate Convertor LTI Context

2δp stopband (aliases rejection)

Analysis

Examples Resampler 3/2

Conclusion

Danger 

Impact of arithmetic rounding errors (for both fixed or floating point) not taken into account.

Sample Rate Convertion MIMO LTI model for ×R/P with rounding errors Characterizing SRC

e(0)

x

S. Tassart

↓P

Introduction Principles

z −1

Fractional Delay

y ↑R z

e(1)

Rate Convertor LTI Context

↓P

Analysis

↑R

Examples

z −1

z

P

HR×P (z)

z −1

R

Resampler 3/2

Conclusion

e(R−1) ↓P

↑R

z

Sample Rate Convertion Rounding error Impact Characterizing SRC S. Tassart Introduction

|H(ejω )| δp

Principles Fractional Delay Rate Convertor LTI Context

−δp

Analysis

Examples

BAD

Resampler 3/2

Conclusion

S(ejω )

ωp

ωs π

ω

Sample Rate Convertion Rounding error Impact Characterizing SRC S. Tassart Introduction

|H(ejω )| δp

Principles Fractional Delay Rate Convertor LTI Context

−δp

Analysis

Examples

GOOD

Resampler 3/2

Conclusion

S(ejω )

ωp

ωs π

ω

Sample Rate Convertion Challenges Characterizing SRC S. Tassart Introduction

Characterization problem

Principles

How to estimate :

Fractional Delay Rate Convertor LTI Context Analysis

Examples

H(ejω ) the transfer function of the kernel of the system S(ejω ) the power spectrum of the rounding noise

Resampler 3/2

Conclusion

use a sine sweep, use the bispectrum of the SRC as a LPTV system, or ...

Sample Rate Convertion Challenges Characterizing SRC S. Tassart Introduction

Characterization problem

Principles

How to estimate :

Fractional Delay Rate Convertor LTI Context Analysis

Examples

H(ejω ) the transfer function of the kernel of the system S(ejω ) the power spectrum of the rounding noise

Resampler 3/2

Conclusion

use a sine sweep, use the bispectrum of the SRC as a LPTV system, or ...

Sample Rate Convertion Challenges Characterizing SRC S. Tassart Introduction

Characterization problem

Principles

How to estimate :

Fractional Delay Rate Convertor LTI Context Analysis

Examples

H(ejω ) the transfer function of the kernel of the system S(ejω ) the power spectrum of the rounding noise

Resampler 3/2

Conclusion

use a sine sweep, use the bispectrum of the SRC as a LPTV system, or ...

Summary Characterizing SRC S. Tassart

1

Introduction

2

Principles Fractional Delay Rate Convertor LTI Context Analysis

3

Examples Resampler 3/2

4

Conclusion

Introduction Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.010

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.100

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.190

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.280

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.370

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.460

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.550

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.640

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.730

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.820

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay

Time = -0.910

Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Fractional Delay How to characterize the interpolation kernel Characterizing SRC

1

S. Tassart

2

process impulse responses while varying the delay interleave the responses

Introduction Principles 1

Fractional Delay Rate Convertor LTI Context Analysis

0.8

Examples Resampler 3/2

0.6

amplitude (linear)

Conclusion

0.4

0.2

0

-0.2 -8

-6

-4

-2

0

time (sample)

2

4

6

Rate Convertor Delayed Impulse Responses Characterizing SRC S. Tassart

Same idea in order to characterize Rate Convertor R/P:

Introduction

1

a band-limited impulse (x0 (n))n∈Z as input vector,

Principles

2

vary the delay τ of the input vector, (xτ (n))n∈Z ,

3

process each input vector, producing a resampled   band-limited impulse, y Rτ (n) with a delay of

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

P

n∈Z

Rτ /P. Problem of interest Examine the relationship between the interleaved signals x(t) and y (t). But some subtlety. . .

Rate Convertor Delayed Impulse Responses Characterizing SRC S. Tassart

Same idea in order to characterize Rate Convertor R/P:

Introduction

1

a band-limited impulse (x0 (n))n∈Z as input vector,

Principles

2

vary the delay τ of the input vector, (xτ (n))n∈Z ,

3

process each input vector, producing a resampled   band-limited impulse, y Rτ (n) with a delay of

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

P

n∈Z

Rτ /P. Problem of interest Examine the relationship between the interleaved signals x(t) and y (t). But some subtlety. . .

Rate Convertor Delayed Impulse Responses Characterizing SRC S. Tassart

Same idea in order to characterize Rate Convertor R/P:

Introduction

1

a band-limited impulse (x0 (n))n∈Z as input vector,

Principles

2

vary the delay τ of the input vector, (xτ (n))n∈Z ,

3

process each input vector, producing a resampled   band-limited impulse, y Rτ (n) with a delay of

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

P

n∈Z

Rτ /P. Problem of interest Examine the relationship between the interleaved signals x(t) and y (t). But some subtlety. . .

Rate Convertor Delayed Impulse Responses Characterizing SRC S. Tassart

Same idea in order to characterize Rate Convertor R/P:

Introduction

1

a band-limited impulse (x0 (n))n∈Z as input vector,

Principles

2

vary the delay τ of the input vector, (xτ (n))n∈Z ,

3

process each input vector, producing a resampled   band-limited impulse, y Rτ (n) with a delay of

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

P

n∈Z

Rτ /P. Problem of interest Examine the relationship between the interleaved signals x(t) and y (t). But some subtlety. . .

Rate Convertor Delayed Impulse Responses Characterizing SRC S. Tassart

Same idea in order to characterize Rate Convertor R/P:

Introduction

1

a band-limited impulse (x0 (n))n∈Z as input vector,

Principles

2

vary the delay τ of the input vector, (xτ (n))n∈Z ,

3

process each input vector, producing a resampled   band-limited impulse, y Rτ (n) with a delay of

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

P

n∈Z

Rτ /P. Problem of interest Examine the relationship between the interleaved signals x(t) and y (t). But some subtlety. . .

Rate Convertor Delayed band-limited impulse Characterizing SRC

1

S. Tassart

2

Create a lowpass filter x(t) Extract the polyphase components xτ (n) = x(τ + n)

Introduction Principles

1

Fractional Delay Rate Convertor LTI Context

0.8

Analysis

Examples

0.6 gain (linear)

Resampler 3/2

Conclusion

0.4

0.2

0

-0.2 -400

-200

0 time (sample)

200

400

Rate Convertor Delayed band-limited impulse Characterizing SRC

1

S. Tassart

2

Create a lowpass filter x(t) Extract the polyphase components xτ (n) = x(τ + n)

Introduction 1

Principles

Time = 0.00

Fractional Delay

0.8

Rate Convertor

(x0 (n))n∈Z

LTI Context Analysis

Resampler 3/2

Conclusion

gain (linear)

Examples

0.6

0.4

0.2

0

-0.2 -30

-20

-10

0 time (sample)

10

20

30

Rate Convertor Delayed band-limited impulse Characterizing SRC

1

S. Tassart

2

Create a lowpass filter x(t) Extract the polyphase components xτ (n) = x(τ + n)

Introduction 1

Principles

Time = 0.31

Fractional Delay

0.8

Rate Convertor

(x0.31 (n))n∈Z

LTI Context Analysis

Resampler 3/2

Conclusion

gain (linear)

Examples

0.6

0.4

0.2

0

-0.2 -30

-20

-10

0 time (sample)

10

20

30

Rate Convertor Delayed band-limited impulse Characterizing SRC

1

S. Tassart

2

Create a lowpass filter x(t) Extract the polyphase components xτ (n) = x(τ + n)

Introduction 1

Principles

Time = 0.63

Fractional Delay

0.8

Rate Convertor

(x0.63 (n))n∈Z

LTI Context Analysis

Resampler 3/2

Conclusion

gain (linear)

Examples

0.6

0.4

0.2

0

-0.2 -30

-20

-10

0 time (sample)

10

20

30

Rate Convertor Delayed band-limited impulse Characterizing SRC

1

S. Tassart

2

Create a lowpass filter x(t) Extract the polyphase components xτ (n) = x(τ + n)

Introduction 1

Principles

Time = 0.94

Fractional Delay

0.8

Rate Convertor

(x0.94 (n))n∈Z

LTI Context Analysis

Resampler 3/2

Conclusion

gain (linear)

Examples

0.6

0.4

0.2

0

-0.2 -30

-20

-10

0 time (sample)

10

20

30

Rate Convertor Process delayed band-limited impulse Characterizing SRC

3

S. Tassart 4 Introduction

  Resample (xτ (n))n∈Z and obtain y Rτ (n) P n∈Z   Rτ Interleave y Rτ (n) for P ∈ [0, 1), obtain y (t) n∈Z

P

Principles 1

Fractional Delay Rate Convertor

Time = 0.00

LTI Context

0.8

Analysis

(y0 (n))n∈Z

Examples Resampler 3/2

0.6 gain (linear)

Conclusion

0.4

0.2

0

-0.2 -40

-30

-20

-10 0 10 time (sample)

20

30

40

Rate Convertor Process delayed band-limited impulse Characterizing SRC

3

S. Tassart 4 Introduction

  Resample (xτ (n))n∈Z and obtain y Rτ (n) P n∈Z   Rτ Interleave y Rτ (n) for P ∈ [0, 1), obtain y (t) n∈Z

P

Principles 1

Fractional Delay Rate Convertor

Time = 0.33

LTI Context

0.8

Analysis

(y0.33 (n))n∈Z

Examples Resampler 3/2

0.6 gain (linear)

Conclusion

0.4

0.2

0

-0.2 -40

-30

-20

-10 0 10 time (sample)

20

30

40

Rate Convertor Process delayed band-limited impulse Characterizing SRC

3

S. Tassart 4 Introduction

  Resample (xτ (n))n∈Z and obtain y Rτ (n) P n∈Z   Rτ Interleave y Rτ (n) for P ∈ [0, 1), obtain y (t) n∈Z

P

Principles 1

Fractional Delay Rate Convertor

Time = 0.67

LTI Context

0.8

Analysis

(y0.67 (n))n∈Z

Examples Resampler 3/2

0.6 gain (linear)

Conclusion

0.4

0.2

0

-0.2 -40

-30

-20

-10 0 10 time (sample)

20

30

40

Rate Convertor Process delayed band-limited impulse Characterizing SRC

3

S. Tassart 4 Introduction

  Resample (xτ (n))n∈Z and obtain y Rτ (n) P n∈Z   Rτ Interleave y Rτ (n) for P ∈ [0, 1), obtain y (t) n∈Z

P

Principles 1

Fractional Delay Rate Convertor

Time = 0.100

LTI Context

0.8

Analysis

(y1.00 (n))n∈Z

Examples Resampler 3/2

0.6 gain (linear)

Conclusion

0.4

0.2

0

-0.2 -40

-30

-20

-10 0 10 time (sample)

20

30

40

Rate Convertor Process delayed band-limited impulse Characterizing SRC

3

S. Tassart 4 Introduction

  Resample (xτ (n))n∈Z and obtain y Rτ (n) P n∈Z   Rτ Interleave y Rτ (n) for P ∈ [0, 1), obtain y (t) P

n∈Z

Principles 1

Fractional Delay Rate Convertor LTI Context

0.8

Analysis

Examples Resampler 3/2

0.6 gain (linear)

Conclusion

0.4

0.2

0

-0.2 -400

-200

0 time (sample)

200

400

Rate Convertor Compare interleaved signals Characterizing SRC S. Tassart

Compare the spectrum from x(t) and y (t)

5 Introduction Principles

Y(ν) X(ν)

0

Fractional Delay Rate Convertor LTI Context

-20

Analysis

Resampler 3/2

Conclusion

gain (dB)

Examples -40

It compares, -60

but . . .

-80

-100 0

0.1

0.2

0.3

reduced frequency (rad/sample)

0.4

0.5

Rate Convertor Compare interleaved signals Characterizing SRC S. Tassart

Compare the spectrum from x(t) and y (t)

5 Introduction Principles

Y(ν) X(ν)

0

Fractional Delay Rate Convertor LTI Context

-20

Analysis

Resampler 3/2

Conclusion

gain (dB)

Examples -40

It compares, -60

but . . .

-80

-100 0

0.1

0.2

0.3

reduced frequency (rad/sample)

0.4

0.5

Rate Convertor Compare interleaved signals Characterizing SRC S. Tassart

Compare the spectrum from x(t) and y (t)

5 Introduction Principles

Y(ν) X(ν)

0

Fractional Delay Rate Convertor LTI Context

-20

Analysis

Resampler 3/2

Conclusion

gain (dB)

Examples -40

It compares, -60

but . . .

-80

-100 0

0.1

0.2

0.3

reduced frequency (rad/sample)

0.4

0.5

Rate Convertor Issues Characterizing SRC S. Tassart Introduction Principles

Difficult to evaluate anything in the stopband from x

Fractional Delay Rate Convertor LTI Context

Missing configurations:

Analysis

Examples Resampler 3/2

Conclusion

τ ∈ [0, P)



Rτ ∈ [0, R) P

How many different configurations to test in τ ∈ [0, P) ? How x and y are really related ?

LTI Context Main Theorem Characterizing SRC S. Tassart

x

x0

Introduction

↓R

R

y

y0 ↑↓ R/P

P

↑P

Principles

z −1

z

Fractional Delay Rate Convertor

xk

LTI Context

↓R

Analysis

Examples

↑↓ R/P

P

↑P z −1 PR

z PR

Resampler 3/2

R

yk

Conclusion

x PR−1

z ↓R

z −1

y PR−1

R

P

↑↓ R/P

↑P

Y (z) = H(z)X (z)

LTI Context Input De-Interleaving Characterizing SRC

x

S. Tassart

x0 ↓R

R

Introduction

z

Principles Fractional Delay

xk

Rate Convertor LTI Context

↓R

Analysis

Examples

PR channels R different polyphase components

z PR

Resampler 3/2

Conclusion

R

each polyphase components needed in P delayed version x PR−1

z

R

↓R

LTI Context Output Interleaving Characterizing SRC S. Tassart

y

y0 P

↑P

Introduction

z −1

Principles Fractional Delay Rate Convertor LTI Context

yk P

Analysis

↑P

Examples

PR Channels

z −1 PR

Resampler 3/2

Conclusion

components shifted and added components interleaved

z −1

y PR−1 P

↑P

Rate Convertor Issues Solved Characterizing SRC S. Tassart Introduction Principles

Difficult to evaluate anything in the stopband from x ⇒ no constraints on x, no difficulties

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

How many different configurations to test in τ ∈ [0, P) ? ⇒ PR configurations to test: τk = k /R

How x and y are related ? ⇒ Y (z) = H(z)X (z)

Rate Convertor Issues Solved Characterizing SRC S. Tassart Introduction Principles

Difficult to evaluate anything in the stopband from x ⇒ no constraints on x, no difficulties

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

How many different configurations to test in τ ∈ [0, P) ? ⇒ PR configurations to test: τk = k /R

How x and y are related ? ⇒ Y (z) = H(z)X (z)

Rate Convertor Issues Solved Characterizing SRC S. Tassart Introduction Principles

Difficult to evaluate anything in the stopband from x ⇒ no constraints on x, no difficulties

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

How many different configurations to test in τ ∈ [0, P) ? ⇒ PR configurations to test: τk = k /R

How x and y are related ? ⇒ Y (z) = H(z)X (z)

Analysis Impulse Response Characterizing SRC S. Tassart

Theorem

Introduction

Y (z) = H(z)X (z)

Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

set x to an impulse: X (z) = 1 1 polyphase component set to an impulse: x 0 (z) = 1 R

other polyphase components set to 0 R tests Not suitable for rounding errors.

Analysis Impulse Response Characterizing SRC S. Tassart

Theorem

Introduction

Y (z) = H(z)X (z)

Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

set x to an impulse: X (z) = 1 1 polyphase component set to an impulse: x 0 (z) = 1 R

other polyphase components set to 0 R tests Not suitable for rounding errors.

Analysis Impulse Response Characterizing SRC S. Tassart

Theorem

Introduction

Y (z) = H(z)X (z)

Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

set x to an impulse: X (z) = 1 1 polyphase component set to an impulse: x 0 (z) = 1 R

other polyphase components set to 0 R tests Not suitable for rounding errors.

Analysis Impulse Response Characterizing SRC S. Tassart

Theorem

Introduction

Y (z) = H(z)X (z)

Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

set x to an impulse: X (z) = 1 1 polyphase component set to an impulse: x 0 (z) = 1 R

other polyphase components set to 0 R tests Not suitable for rounding errors.

Analysis Impulse Response Characterizing SRC S. Tassart

Theorem

Introduction

Y (z) = H(z)X (z)

Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

set x to an impulse: X (z) = 1 1 polyphase component set to an impulse: x 0 (z) = 1 R

other polyphase components set to 0 R tests Not suitable for rounding errors.

Analysis Impulse Response Characterizing SRC S. Tassart

Theorem

Introduction

Y (z) = H(z)X (z)

Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

set x to an impulse: X (z) = 1 1 polyphase component set to an impulse: x 0 (z) = 1 R

other polyphase components set to 0 R tests Not suitable for rounding errors.

Analysis Periodic Signal Characterizing SRC S. Tassart Introduction Principles Fractional Delay Rate Convertor

set the period to M ⇒ rounding noise of same period iff M = KPR

LTI Context Analysis

Examples Resampler 3/2

wait for steady state in y ⇒ extract M samples from x and y

Conclusion

(i) 2jπν ) b 2jπν ) = Y (e H(e X (i) (e2jπν )

Analysis Periodic Signal Characterizing SRC S. Tassart Introduction Principles Fractional Delay Rate Convertor

set the period to M ⇒ rounding noise of same period iff M = KPR

LTI Context Analysis

Examples Resampler 3/2

wait for steady state in y ⇒ extract M samples from x and y

Conclusion

(i) 2jπν ) b 2jπν ) = Y (e H(e X (i) (e2jπν )

Analysis Periodic Signal Characterizing SRC S. Tassart Introduction Principles Fractional Delay Rate Convertor

set the period to M ⇒ rounding noise of same period iff M = KPR

LTI Context Analysis

Examples Resampler 3/2

wait for steady state in y ⇒ extract M samples from x and y

Conclusion

(i) 2jπν ) b 2jπν ) = Y (e H(e X (i) (e2jπν )

Analysis Periodic Signal Characterizing SRC S. Tassart Introduction Principles Fractional Delay Rate Convertor

set the period to M ⇒ rounding noise of same period iff M = KPR

LTI Context Analysis

Examples Resampler 3/2

wait for steady state in y ⇒ extract M samples from x and y

Conclusion

(i) 2jπν ) b 2jπν ) = Y (e H(e X (i) (e2jπν )

Analysis Weakly nonlinear Analysis Characterizing SRC S. Tassart Introduction

To separate: the linear contribution H: its transfer function H(e2jπν ) the rounding noise: its power spectrum S(e2jπν )

Principles Fractional Delay Rate Convertor LTI Context Analysis

Cf. H.W. Schüßler, et all. “A new method for measuring the performance of weakly nonlinear systems,” in ICASSP-89

Examples Resampler 3/2

Conclusion

Repeat and average the experiment for different x (i) : L

b 2jπν ) = H(e

1 X Y (i) (e2jπν ) L X (i) (e2jπν ) i=1

b 2jπν ) = S(e

L  1 X  (i) 2jπν b 2jπν )X (i) (e2jπν ) Y (e ) − H(e LM i=1

Analysis Weakly nonlinear Analysis Characterizing SRC S. Tassart Introduction

To separate: the linear contribution H: its transfer function H(e2jπν ) the rounding noise: its power spectrum S(e2jπν )

Principles Fractional Delay Rate Convertor LTI Context Analysis

Cf. H.W. Schüßler, et all. “A new method for measuring the performance of weakly nonlinear systems,” in ICASSP-89

Examples Resampler 3/2

Conclusion

Repeat and average the experiment for different x (i) : L

b 2jπν ) = H(e

1 X Y (i) (e2jπν ) L X (i) (e2jπν ) i=1

b 2jπν ) = S(e

L  1 X  (i) 2jπν b 2jπν )X (i) (e2jπν ) Y (e ) − H(e LM i=1

Analysis Weakly nonlinear Analysis Characterizing SRC S. Tassart Introduction

To separate: the linear contribution H: its transfer function H(e2jπν ) the rounding noise: its power spectrum S(e2jπν )

Principles Fractional Delay Rate Convertor LTI Context Analysis

Cf. H.W. Schüßler, et all. “A new method for measuring the performance of weakly nonlinear systems,” in ICASSP-89

Examples Resampler 3/2

Conclusion

Repeat and average the experiment for different x (i) : L

b 2jπν ) = H(e

1 X Y (i) (e2jπν ) L X (i) (e2jπν ) i=1

b 2jπν ) = S(e

L  1 X  (i) 2jπν b 2jπν )X (i) (e2jπν ) Y (e ) − H(e LM i=1

Summary Characterizing SRC S. Tassart

1

Introduction

2

Principles Fractional Delay Rate Convertor LTI Context Analysis

3

Examples Resampler 3/2

4

Conclusion

Introduction Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

Examples Resampler 3/2 #1 Characterizing SRC S. Tassart

Magnitude of the transfer function and residual noise for the 3/2 resampler #1 FLT FLT noise floor

0

Introduction Principles

-20

Fractional Delay Rate Convertor

-40

LTI Context Analysis

Resampler 3/2

Conclusion

-60 gain (dB)

Examples

-80 -100 -120 -140 -160 -180 0

1/6 1/4 1/3 normalized frequency (cycle/sample)

1/2

Examples Resampler 3/2 #1 Characterizing SRC S. Tassart

Magnitude of the transfer function and residual noise for the 3/2 resampler #1 FLT FLT noise floor FIX24 FIX24 noise floor

0

Introduction Principles

-20

Fractional Delay Rate Convertor

-40

LTI Context Analysis

Resampler 3/2

Conclusion

-60 gain (dB)

Examples

-80 -100 -120 -140 -160 -180 0

1/6 1/4 1/3 normalized frequency (cycle/sample)

1/2

Examples Resampler 3/2 #1 Characterizing SRC S. Tassart

Magnitude of the transfer function and residual noise for the 3/2 resampler #1 FLT FLT noise floor FIX24 FIX24 noise floor FIX16 FIX16 noise floor

0

Introduction Principles

-20

Fractional Delay Rate Convertor

-40

LTI Context Analysis

Resampler 3/2

Conclusion

-60 gain (dB)

Examples

-80 -100 -120 -140 -160 -180 0

1/6 1/4 1/3 normalized frequency (cycle/sample)

1/2

Examples Resampler 3/2 #1 Zoom Characterizing SRC S. Tassart

Magnitude of the transfer function (zoom) for the 3/2 resampler #2 0.02

FLT

Introduction

0.015

Principles Fractional Delay Rate Convertor

0.01

LTI Context Analysis

Resampler 3/2

Conclusion

gain (dB)

0.005 Examples

0 -0.005 -0.01 -0.015 -0.02 0

50% (1/6) 80% normalized frequency (cycle/sample)

90%

1/6

Examples Resampler 3/2 #1 Zoom Characterizing SRC S. Tassart

Magnitude of the transfer function (zoom) for the 3/2 resampler #2 0.02

FLT FIX24

Introduction

0.015

Principles Fractional Delay Rate Convertor

0.01

LTI Context Analysis

Resampler 3/2

Conclusion

gain (dB)

0.005 Examples

0 -0.005 -0.01 -0.015 -0.02 0

50% (1/6) 80% normalized frequency (cycle/sample)

90%

1/6

Examples Resampler 3/2 #1 Zoom Characterizing SRC S. Tassart

Magnitude of the transfer function (zoom) for the 3/2 resampler #2 0.02

FLT FIX24 FIX16

Introduction

0.015

Principles Fractional Delay Rate Convertor

0.01

LTI Context Analysis

Resampler 3/2

Conclusion

gain (dB)

0.005 Examples

0 -0.005 -0.01 -0.015 -0.02 0

50% (1/6) 80% normalized frequency (cycle/sample)

90%

1/6

Examples Resampler 3/2 #2 Characterizing SRC S. Tassart

Magnitude of the transfer function and residual noise for the 3/2 resampler #2 FLT FLT noise floor

0

Introduction Principles

-20

Fractional Delay Rate Convertor

-40

LTI Context Analysis

Resampler 3/2

Conclusion

-60 gain (dB)

Examples

-80 -100 -120 -140 -160 -180 0

1/6 1/4 1/3 normalized frequency (cycle/sample)

1/2

Examples Resampler 3/2 #2 Characterizing SRC S. Tassart

Magnitude of the transfer function and residual noise for the 3/2 resampler #2 FLT FLT noise floor FIX24 FIX24 noise floor

0

Introduction Principles

-20

Fractional Delay Rate Convertor

-40

LTI Context Analysis

Resampler 3/2

Conclusion

-60 gain (dB)

Examples

-80 -100 -120 -140 -160 -180 0

1/6 1/4 1/3 normalized frequency (cycle/sample)

1/2

Examples Resampler 3/2 #2 Characterizing SRC S. Tassart

Magnitude of the transfer function and residual noise for the 3/2 resampler #2 FLT FLT noise floor FIX24 FIX24 noise floor FIX16 FIX16 noise floor

0

Introduction Principles

-20

Fractional Delay Rate Convertor

-40

LTI Context Analysis

Resampler 3/2

Conclusion

-60 gain (dB)

Examples

-80 -100 -120 -140 -160 -180 0

1/6 1/4 1/3 normalized frequency (cycle/sample)

1/2

Examples Resampler 3/2 #2 Zoom Characterizing SRC S. Tassart

Magnitude of the transfer function (zoom) for the 3/2 resampler #2 0.02

FLT

Introduction

0.015

Principles Fractional Delay Rate Convertor

0.01

LTI Context Analysis

Resampler 3/2

Conclusion

gain (dB)

0.005 Examples

0 -0.005 -0.01 -0.015 -0.02 0

50% (1/6) 80% normalized frequency (cycle/sample)

90%

1/6

Examples Resampler 3/2 #2 Zoom Characterizing SRC S. Tassart

Magnitude of the transfer function (zoom) for the 3/2 resampler #2 0.02

FLT FIX24

Introduction

0.015

Principles Fractional Delay Rate Convertor

0.01

LTI Context Analysis

Resampler 3/2

Conclusion

gain (dB)

0.005 Examples

0 -0.005 -0.01 -0.015 -0.02 0

50% (1/6) 80% normalized frequency (cycle/sample)

90%

1/6

Examples Resampler 3/2 #2 Zoom Characterizing SRC S. Tassart

Magnitude of the transfer function (zoom) for the 3/2 resampler #2 0.02

FLT FIX24 FIX16

Introduction

0.015

Principles Fractional Delay Rate Convertor

0.01

LTI Context Analysis

Resampler 3/2

Conclusion

gain (dB)

0.005 Examples

0 -0.005 -0.01 -0.015 -0.02 0

50% (1/6) 80% normalized frequency (cycle/sample)

90%

1/6

Summary Characterizing SRC S. Tassart

1

Introduction

2

Principles Fractional Delay Rate Convertor LTI Context Analysis

3

Examples Resampler 3/2

4

Conclusion

Introduction Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

Conclusion Summary Characterizing SRC S. Tassart Introduction Principles Fractional Delay

A LTI block diagram based on multiple instances of a SRC: Substitute LPTV characterization methods: bispectrum . . .

by LTI methods:

Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

impulse response, sine distortion . . .

Kernel from the SRC available in black box conditions Power density from the rounding noise also available

LTI : Linear Time Invariant LPTV : Linear Periodically Time Varying

Conclusion Future Directions Characterizing SRC S. Tassart Introduction Principles

Understand the curious shape from the power density of the rounding noise

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Extension to any LPTV system i.e. when P and R are not coprime (e.g. filterbank)

Conclusion

Reduce the amount of processing tests: compare with bispectrum methods at equivalent variance

Conclusion Future Directions Characterizing SRC S. Tassart Introduction Principles

Understand the curious shape from the power density of the rounding noise

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Extension to any LPTV system i.e. when P and R are not coprime (e.g. filterbank)

Conclusion

Reduce the amount of processing tests: compare with bispectrum methods at equivalent variance

Conclusion Future Directions Characterizing SRC S. Tassart Introduction Principles

Understand the curious shape from the power density of the rounding noise

Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Extension to any LPTV system i.e. when P and R are not coprime (e.g. filterbank)

Conclusion

Reduce the amount of processing tests: compare with bispectrum methods at equivalent variance

Conclusion Questions and Answers Characterizing SRC S. Tassart Introduction Principles Fractional Delay Rate Convertor LTI Context Analysis

Examples Resampler 3/2

Conclusion

Thank you for listening. Question & Answers

Summary Characterizing SRC S. Tassart System Model Error Model

Example

5

System Model Error Model

6

Examples SoX 3/4 SoX 44100/48000

SoX 3/4 SoX 44100/48000

Analysis Error Model Characterizing SRC

x

S. Tassart

x0 ↓R

R

y0 ↑↓ R/P

P

e0

y

P

↑P

System Model z

Error Model

yk

xk

Example ↓R

SoX 3/4 SoX 44100/48000

R

↑↓ R/P

P

z −1

e1

P

↑P z −1 PR

PR

z

y PR−1 e PR−1

x PR−1

z

R

↓R

P

↑↓ R/P

Y (z) = H(z)X (z) +

z −1

P

↑P

P−1 X k =0

Ek (z)

Summary Characterizing SRC S. Tassart System Model Error Model

Example

5

System Model Error Model

6

Examples SoX 3/4 SoX 44100/48000

SoX 3/4 SoX 44100/48000

Resampler 3/4 Sound eXchange Characterizing SRC S. Tassart

the Swiss Army knife of sound processing programs. http://sox.sourceforge.net/

System Model Error Model

Example SoX 3/4 SoX 44100/48000

Table: Resampling options for SoX v14.2.0

Quality

Phase Response

Bandwidth

Rej

-l

low

linear

80%

100 dB

-m

medium

intermediate

95%

100 dB

-h

high

intermediate

95%

125 dB

-v

very high

intermediate

95%

175 dB

Examples SoX 3/4 Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel and rounding errors 0

System Model Error Model

rounding errors resampling kernel -l

-20

Example

-40

SoX 3/4 SoX 44100/48000

gain (dB)

-60 -80 -100 -120 -140 -160 -180 0

1/8 1/4 3/8 normalized frequency (cycles/sample)

1/2

Examples SoX 3/4 Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel and rounding errors 0

System Model Error Model

rounding errors resampling kernel -l resampling kernel -m

-20

Example

-40

SoX 3/4 SoX 44100/48000

gain (dB)

-60 -80 -100 -120 -140 -160 -180 0

1/8 1/4 3/8 normalized frequency (cycles/sample)

1/2

Examples SoX 3/4 Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel and rounding errors 0

System Model Error Model

rounding errors resampling kernel -l resampling kernel -m resampling kernel -h

-20

Example

-40

SoX 3/4 SoX 44100/48000

gain (dB)

-60 -80 -100 -120 -140 -160 -180 0

1/8 1/4 3/8 normalized frequency (cycles/sample)

1/2

Examples SoX 3/4 Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel and rounding errors 0

System Model Error Model

rounding errors resampling kernel -l resampling kernel -m resampling kernel -h resampling kernel -v

-20

Example

-40

SoX 3/4 SoX 44100/48000

gain (dB)

-60 -80 -100 -120 -140 -160 -180 0

1/8 1/4 3/8 normalized frequency (cycles/sample)

1/2

Examples SoX 3/4 Zoom Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel 0.0001

resampling kernel -l

System Model Error Model

Example

5e-05

gain (dB)

SoX 3/4 SoX 44100/48000

0

-5e-05

-0.0001

-0.00015 0

71.2% 80% normalized frequency (cycles/sample)

92.2% 1/8

Examples SoX 3/4 Zoom Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel 0.0001

resampling kernel -l resampling kernel -m

System Model Error Model

Example

5e-05

gain (dB)

SoX 3/4 SoX 44100/48000

0

-5e-05

-0.0001

-0.00015 0

71.2% 80% normalized frequency (cycles/sample)

92.2% 1/8

Examples SoX 3/4 Zoom Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel 0.0001

resampling kernel -l resampling kernel -m resampling kernel -h

System Model Error Model

Example

5e-05

gain (dB)

SoX 3/4 SoX 44100/48000

0

-5e-05

-0.0001

-0.00015 0

71.2% 80% normalized frequency (cycles/sample)

92.2% 1/8

Examples SoX 3/4 Zoom Characterizing SRC S. Tassart

resampler 3/4: magnitude kernel 0.0001

resampling kernel -l resampling kernel -m resampling kernel -h resampling kernel -v

System Model Error Model

Example

5e-05

gain (dB)

SoX 3/4 SoX 44100/48000

0

-5e-05

-0.0001

-0.00015 0

71.2% 80% normalized frequency (cycles/sample)

92.2% 1/8

SoX 3/4

Performance Measurements

Characterizing SRC S. Tassart

Table: Performance measurements of SoX v14.2.0

System Model Error Model

Example

bandwidth

ripples in the

SoX 3/4 SoX 44100/48000

passband

Rej -1 dB

-0.01 mB

-l

[-0.01,0.01] mB

105.5 dB

80%

72%

-m

[-0.01,0.01] mB

115.1 dB

95%

80%

-h

[0,0.01] mB

128.3 dB

95%

92%

-v

[0,0.01] mB

166.6 dB

95%

92%

Examples

SoX -m 44100/48000 Characterizing SRC resampler 147/160: kernel and rounding errors

S. Tassart

resampling kernel rounding errors

0

System Model -20

Error Model

Example SoX 3/4 SoX 44100/48000

-40

gain (dB)

-60

-80

-100

-120

-140

-160 0

0.1

0.2

0.3

normalized frequency (cycles/sample)

0.4

0.5

Examples

SoX -m 44100/48000 - Zoom passband Characterizing SRC resampler 147/160: kernel and rounding errors

S. Tassart 0

System Model Error Model -20

Example SoX 3/4 SoX 44100/48000

gain (dB)

-40

resampling kernel rounding errors

-60

-80

-100

-120 0

1/160 x 0.5

normalized frequency (cycles/sample)

Examples

SoX -m 44100/48000 - Zoom passband Characterizing SRC resampler 147/160: kernel zoom

S. Tassart

0.0001 resampling kernel

System Model Error Model

Example

5e-05

gain (dB)

SoX 3/4 SoX 44100/48000

0

-5e-05

-0.0001 0

1/160 x 0.5

normalized frequency (cycles/sample)

SoX -m 44100/48000 Performance Measurements

Characterizing SRC S. Tassart System Model Error Model

Example SoX 3/4 SoX 44100/48000

Table: Performance measurements of SoX v14.2.0

bandwidth

ripples in the passband

-m

[-0.01,0.01] mB

Rej

91 dB

-1 dB

-0.01 mB

94%

69%