Bayesian Blind Deconvolution of sparse images with a Student-t a

deconv Cf. Estimated PSF Ch. Estimated Cf. A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: ...
349KB taille 2 téléchargements 298 vues
.

Bayesian Blind Deconvolution of sparse images with a Student-t a priori model Ali Mohammad-Djafari Laboratoire des Signaux et Syst`emes, UMR8506 CNRS-SUPELEC-UNIV PARIS SUD 11 SUPELEC, 91192 Gif-sur-Yvette, France http://lss.supelec.free.fr Email: [email protected] http://djafari.free.fr

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Image Restoration Forward model: 2D Convolution ZZ g(x, y) = f (x′ , y ′ ) h(x − x′ , y − y ′ ) dx′ dy ′ + ǫ(x, y) ǫ(x, y)

f

f (x, y) ✲ h(x, y)

g

❄ ✎☞ ✲ + ✲g(x, y) ✍✌

Inversion: Deconvolution ? ⇐=

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Blind Image Deconvolution g(x, y) = h(x, y) ∗ f (x, y) + ǫ(x, y)



Convolution: Given f and h compute g



Identification: Given f and g estimate h



Deconvolution: Given g and h estimate f



Blind deconvolution: Given g estimate both h and f

Discretization: ◮

g = h ∗ f + ǫ −→ g = Hf + ǫ, H huge dimensional TBT matrice obtained from the elements of Point Spread Function (PSF) h(x, y)



g = f ∗ h + ǫ −→ g = F h + ǫ, F huge dimensional HBT matrice obtained from the elements of the input image f (x, y)

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Identification and Deconvolution: Classical methods Deconvolution g(x, y) = h(x, y) ∗ f (x, y) + ǫ(x, y)

Identification g(x, y) = h(x, y) ∗ f (x, y) + ǫ(x, y)

Wiener filtering H ∗ (u,v) b f (u, v) = Sǫǫ (u,v) g(u, v) 2

Wiener filtering F ∗ (u,v) b h(u, v) = Sǫǫ (u,v) g(u, v) 2

J(f ) = kg − Hf k2 + λf kD f f k2

J(h) = kg − F hk2 + λh kD h hk2

|H(u,v)| + S

f f (u,v)

Regularization g =Hf +ǫ ′

|F (u,v)| + S

hh (u,v)

Regularization g =F h+ǫ

2λf D ′f Df f

∇J(h) = −2F ′ (g − F h) + 2λh D ′h Dh h

Circulante approximation ∗ (u,v) fb(u, v) = |H(u,v)|H 2 +λ |D (u,v)|2 g(u, v)

Circulante approximation ∗ (u,v) b h(u, v) = |F (u,v)||F 2 +λ |D (u,v)|2 g(u, v)

∇J(f ) = −2H (g − Hf ) +

b = [H ′ H + λf D ′ D f ]−1 H ′ g f f f

f

b = [F ′ F + λh D ′ D h ]−1 F ′ g h h h

h

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Deconvolution, Identification: Bayesian approach Deconvolution Forward model g = H f + ǫ Likelihood A priori Bayes

Identification g =F h+ǫ

p(g|f ) = N (g|Hf , Σǫ ) p(g|h) = N (g|F h, Σǫ ) p(f ) = N (f |0, Σf ) p(h) = N (h|0, Σh ) p(g |f ) p(f ) p(g |h) p(h) p(f |g) = p(h|g) = p(g ) p(g )

Particular case: Σǫ = σǫ2 I, Σf = σf2 (D ′f D f )−1 , Σh = σh2 (D ′h D h )−1 Deconvolution p(f |g) ∝ p(g|f ) p(f ) ∝ exp {−J(f )} J(f ) = kg − Hf k2 + λf kD f f k2 λf = σǫ2 /σf2

Identification p(h|g) ∝ p(g|h) p(h) ∝ exp {−J(h)} J(h) = kg − F hk2 + λh kD h hk2 λh = σǫ2 /σh2

bf) b, Σ p(f |g) = N (f |f ′ b = [H H + λf D ′ D f ]−1 F ′ g f f b f = [H ′ H + λf D ′ Df ]−1 Σ

b h) b Σ p(h|g) = N (h|h, ′ b = [F F + λh D′ D h ]−1 F ′ g h h b h = [F ′ F + λh D ′ D h ]−1 Σ h

f

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Blind Deconvolution: Bayesian approach g =Hf +ǫ=F h+ǫ



Joint posterior law: p(f , h|g) ∝ p(g|f , h) p(f ) p(h) ∝ exp {−J(f , h)} J(f , h) = kg − Hf k2 + λf kD f f k2 + λh kD h hk2





Joint MAP: b = arg max b , h) (f (f ,h) {p(f , h|g)} = arg min(f ,h) {J(f , h)}

Alternate optimization:     f b (k) = arg max p(f , h(k) |g) = arg min J(f , h(k) ) f f    h b (k) = arg max p(f (k) , h|g) = arg min J(f (k) , h) h h

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Blind Deconvolution: Variational Bayesian Approximation algorithm ◮

Joint posterior law: p(f , h|g) ∝ p(g|f , h) p(f ) p(h)



Approximation: p(f , h|g) by q(f , h) = q1 (f ) q2 (h)



Criterion of approximation: Kullback-Leiler Z Z q q1 q2 KL(q|p) = q ln = q1 q2 ln p p

KL(q1 q2 |p) =

Z

q1 ln q1 +

Z

q2 ln q2 −

Z

q ln p

= −H(q1 ) − H(q2 ) + h− ln p((f , h|g)iq ◮

When the expression of q1 and q2 are obtained, use them.

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Variational Bayesian Approximation algorithm ◮

Kullback-Leibler criterion Z Z Z KL(q1 q2 |p) = q1 ln q1 + q2 ln q2 + q ln p = −H(q1 ) − H(q2 ) + h− ln p((f , h|g)iq



Free energy F(q1 q2 ) = − hln p((f , h|g)iq1 q2



Equivalence between optimization of KL(q1 q2 |p) and F(q1 q2 )



Alternate optimization: qb1 = arg min {KL(q1 q2 |p)} = arg min {F(q1 q2 )} q1

q1

qb2 = arg min {KL(q1 q2 |p)} = arg min {F(q1 q2 )} q2

q2

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Summary of Bayesian methods for Blind Deconvolution

p(f , h|g) =





p(g|f , h) p(f ) p(h) p(g)

b , h) b = arg max JMAP: (f (f ,h) {p(f , h|g)}

   f b (k+1) = arg max p(f , h(k) |g) f   h b (k+1) = arg max p(f (k) , h|g) h

VBA: Approximation: p(f , h|g) by q(f , h) = q1 (f ) q2 (h)  qb1 (f ) = arg minq1 {KL(q1 q2 |p)} = arg minq1 {F(q1 q2 )} qb2 (h) = arg minq2 {KL(q1 q2 |p)} = arg minq2 {F(q1 q2 )}

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Summary of Bayesian methods for Blind Deconvolution Alternate optimization for JMAP b b (0) → h→ h ↑ b h←

 b = arg max p(f , h(k) |g) f f b = arg max p(f (k) , h|g) h h 

Alternate optimization for VBA

(0)

q2 (h) → q2 (h)→ ↑ b h ← qb2 (h)←

qb1 = arg minq2 {KL(q1 qb2 |p)}

qb2 = arg minq2 {KL(b q1 q2 |p)}

b →f

↓ b ←f

b →b q1 (f ) → h ↓



qb1 (f )

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

JMAP and VBA with Gaussian priors JMAP: Initialization: h(0) = h0 , H = Convmtx(h(0) ) Iterations: f (k) = (H ′ H + λf I)−1 H ′ g F = Convmtx(f (k−1) ) h(k) = (F ′ F + λh C ′h C h )−1 F ′ g H = Convmtx(h(k−1) ) VBA: Initialization:h(0) = h0 , H = Convmtx(h(0) ), D f = I, D h = I Iterations: f (k) = (H ′ H + λf I + vǫ D ′f Df )−1 H ′ g Σf = vǫ (H ′ H + λf I + vǫ D′h D h )−1 F = Convmtx(f (k−1) ) Tr {HΣf H ′ } = kD ′h f k22 h(k) = (F ′ F + λh C ′h C h + vǫ D ′h D h )−1 F ′ g Σh = vǫ (F ′ F + λh C ′h C h + D′h D h )−1 H = Convmtx(h(k−1) ) Tr {F Σh F ′ } = kD ′f f k22

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

JMAP and VBA with Gaussian priors JMAP:

b (0) → h→ b h ↑

b h← (0)

VBA:

b b h h (0) ⇒ b ⇒ Σh bh Σ ⇑

H = Convmtx(h) b = (H ′ H + λf I)−1 H ′ g f

b →f

F = Convmtx(f ) b = (F ′ F + λh C ′ C h )−1 F ′ g h h

b ←f

b H = Convmtx(h) ′ Tr {F Σh F } = kD f f k22 b f = vǫ (H ′ H + λf I + D′ Df )−1 Σ f b = (H ′ H + λf I + D′ D f )−1 H ′ g f f



b f ⇒b Σf ⇓

F = Convmtx(f ) b b Tr {HΣf H ′ } = kD h hk22 h f ⇐ ⇐ b = (F ′ F + λh C ′ C h + D ′ D h )−1 F ′ g bh bf h Σ Σ h h ′ ′ ′ −1 b h = vǫ (H H + λh C C h + D D h ) Σ h h

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Student-t prior ◮

Sparsity enforcing: Heavy tailed priors: Cauchy and Student-t: Y T (f j |ν, vf ) p(f ) = j

Infinite scaled mixture representation: Z ∞ N (fj |0, zj−1 ) G(zj |ν/2, ν/2) dzj T (fj |ν, vf ) = 0



Hierarchical model: p(f |z) p(z) Y p(f |z) = N (f j |0, z −1 j vf ), j



p(z) =

Y

G(z j |α, β)

j

Joint posterior: p(h, f , z|g) ∝ p(g|h, f ) p(f |z) p(z) ◮ ◮

b f b, z b) = arg max(h,f ,z ) {p(h, f , z|g)} JMAP: (h, VBA: Approximate p(h, f , z|g) by q1 (h) q2 (f ) q3 (z)

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

JMAP and VBA with a Student-t prior ◮

Because we only changed p(f ) by p(f |z) p(z) where both are separable, the only changes are: ◮

replace f (k) = (H ′ H + λf I)−1 H ′ g



by: b (k) )−1 H ′ g f (k) = (H ′ H + λf Z h i b (k) = diag zb(k) , zb(k) = βbj Z j

j

α bj

with

JM AP  1 2 α b = α +  j 2 kf k and b βj = β + 21 + kg − h ∗ f k2

V BA  1 < kf k2 > α b = α +  j 2 and b βj = β + 21 + < kg − h ∗ f k2 >

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Comparison between JMAP and VBA Alternate optimization for JMAP b b (0) h h ⇒ ⇒ (0) b z b z ⇑

b z ] , H = Convmtx(h) Z = diag [b ′ ′ −1 b f = (H H + λf Z) H g α bj = α + βbj = β +

1 2 2 kf k 1 2 + kg

− h ∗ f k2 b b h βj ⇐ zb(k) j = α bj z F = Convmtx(f ) b = (F ′ F + λh C ′ C h )−1 F ′ g h h

b →f ↓

b ←f

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Comparison between JMAP and VBA VBA b (0) b h h (0) ⇒ Σ ⇒ h Σh (0) b z b z ⇑

b z ] , H = Convmtx(h) Z = diag [b Tr {F Σh F ′ } = kD h f k2 b f = vǫ (H ′ H + λf Z + D ′ D f )−1 Σ f b = (H ′ H + λf Z + D ′ D f )−1 H ′ g f f α bj = α + 21 < kf k2 > βbj = β + 21 + < kg − h ∗ f k2 >

(k) βb b h zbj = αbjj b h ⇐ F = Convmtx(f ) Σ b z Tr {HΣf H ′ } = kD h hk2 b = (F ′ F + λh C ′ C h + D ′ D h )−1 F ′ g h h h b h = vǫ (H ′ H + λh C ′ C h )−1 Σ h

b f ⇒ b Σf ⇓

b f ⇐b Σf

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Conclusions ◮

In this paper, we considered the Blind Image Deconvolution problem in a Bayesian framework.



We compared two main algorithms: JMAP and VBA giving some detailed insight for each of them for two cases: ◮ ◮





Gaussian prior for both IRF h and the input signal f and Gaussian prior for the IRF but a Student-t prior for the input signals or images to enhance or to account for possible sparsity structure of the input.

JMAP: esay and not very costly but uncertainties are not accounted for. b and h b are VBA: is more costly but both uncertainties of f

b accounted for, in each iteration, for computing respectively, h b. and f

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

Simulated results f

h

g

original f

PSF h

Blurred & noisy g

fh

hh

fh

deconv fb

b Estimated PSF h

Estimated fb

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,

THANKS

Questions and Remarks

A. Mohammad-Djafari, Bayesian Blind Deconvolution of sparse images with a Student-t a priori model, IPAS 2014: Tunisia, Nov. 5-7, 2014,