

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Background Segmentation

Segmentation System on the Intel Architecture frames at 25 fps on a PentiumÂ®III operating at 500MHz. We discuss the implementation of a real-time.

 Télécharger le PDF

 92KB taille
 38 téléchargements
 406 vues

 commentaire

 Report

Implementation of a Real-time Foreground/Background Segmentation System on the Intel Architecture Fernando C. M. Martins, Brian R. Nickerson, Vareck Bostrom, and Rajeeb Hazra Intel Architecture Laboratories – Video and Audio Technologies

2111 NE 25th Avenue Hillsboro, Oregon 97124, USA

Abstract Foreground/background segmentation is a technique that shares the same goals of Blue-screen chroma keying – to separate the foreground from the background – but does so without the strong requirement of the existence of a known screen behind the subject of interest. Instead, a model of the background is built using historic and weak prior knowledge. Because of the computation-intensive nature of model-based segmentation algorithms, foreground/background segmentation at video rates is a challenging problem without the use of custom hardware or high-end workstations. We discuss techniques used in the implementation of a real-time foreground/background segmentation algorithm on a general-purpose consumer grade PC. In particular we demonstrate optimization techniques in the implementation of three critical sections of our algorithm: Binary Morphological Filter, Directional Morphological Filter and Region Flood Fill. These techniques exploit the instruction set of the Pentium®II and Pentium®III processors allowing video segmentation of 320x240 color frames at 25 fps. The optimized critical sections may be immediately used in a plethora of other applications. Moreover, the optimization methodology provides useful insight into the optimization of other image processing and computer vision techniques, such as edge detection, object boundary localization, and morphological pre- and postprocessing.

1. Algorithm Overview Blue screen chroma keying is a technique widely used in video production to separate the objects in the foreground from a particular background whose color, usually blue or green, is known a priori. The separated object can then be digitally composited on top of a virtual background.

Blue-screen chroma keying and model-based foreground/background segmentation are techniques to separate the foreground from the background. The latter method does not rely on the strong assumption imposed by the former that the screen behind the subject of interest is known. Without this cumbersome requirement, the range of applications for segmentation increases substantially beyond digital video compositing. New applications include region of interest identification, surveillance, target acquisition and tracking. Instead of assuming a known screen behind the subjects, foreground/background segmentation relies on a model of the background that is built using historic and weak prior knowledge. The model is a mosaic composed by the static fragments of the scene. Lighting is assumed to be quasi static. The scene is assumed to have no fastmoving objects in the background. Slow changes in the background and lighting may be incorporated dynamically by adding or upgrading scene fragments in the mosaic. Lenient applications may allow the collection of an initial set of snapshots of the background. In this case, the model is built by median filtering the set of snapshots to remove camera noise. Similarly to chroma keying, a difference-driven copy is computed between the current video frame and the background model. Pixels in the current frame that differ from the background by more than a threshold are copied to the output buffer and pixels that are similar are set to a predetermined value. Unfortunately, unlike in chroma keying, this difference-driven copy process does not suffice to identify the foreground. Given the weak nature of the knowledge available in the background model, false positives (pieces of background labeled as foreground) and false negatives (holes inside foreground blobs) are prevalent in the computed difference image. To tackle these issues two specialized morphological filter paths were designed. Please refer to figure 1 for a

Current Frame

Background Image

Difference-Driven Copy Background Construction Directional Morph Filter

Morphological Gradient Binary Morph Filter

Region Flood Fill

Region Labeling FG/BG

Diagram 1: block diagram of the foreground/background segmentation algorithm block diagram of the whole algorithm. The first filter path is composed by a Binary Morphological Filter that operates on the binary foreground/background map generated by the difference-driven copy. It is a sequence of morphological openings and closings designed to eliminate false negatives inside large foreground blobs as well as false positives from the background region. The Binary Morphological Filter has the side effect of corrupting object edge localization. A second filter path was designed to help segment the scene into small regions with precise edge localization. First we use a Directional Morphological Filter that operates on the pixel values of the difference image to blur the details of foreground cues. This filter is adaptive and does not blur the image close to the object boundaries. The Directional Morphological Filter has the weakness of not removing small holes from the detected foreground. The selectively blurred image is then fed to a Multiscale Morphological Gradient algorithm[4] that detects edges. Thresholding of the gradient magnitudes followed by a Region Flood Fill provides a segmentation of the scene into small regions. We combine the output of the two filter paths by labeling the regions identified in the second filter path as foreground or background if the majority of the corresponding pixels are labeled as foreground in the output of the first filter path. This allows us to harvest the

edge localization property of the Directional Morphological Filter and the reduced artifacts property of the Binary Morphological Filter.

2. Critical Sections The whole algorithm was implemented in C++ and originally operated at 2 seconds per frame. The optimizations resulted in a speedup by a factor of 50, ultimately enabling segmentation of 320x240 color frames at 25 fps on a Pentium®III operating at 500MHz. Performance profiling revealed that the critical sessions in order of severity were: Multiscale Morphological Gradient (1120 ms/frame), Binary Morphological Filter (404 ms/frame), Directional Morphological Filter (376 ms/frame). In the following subsections of the paper we will describe in detail the implementation of 2 of these methods highlighting the optimization methods used. Although not a critical section in the first profiling, we also discuss our implementation of Region Flood Fill to illustrate the optimization of a recursive algorithm.

2.1 Binary Morphological Filter This filter is a sequence of six mathematical morphology operations[1] applied to the alpha plane of the difference image. It takes the binary result of difference driven copy contained in the alpha plane and patches small holes

using a 3x3 Dilate followed by 3x3 Erode. Then it uses a 5x5 Erode followed by 5x5 Dilate to remove salt and pepper noise and isolated small blobs of pixels. Finally it applies a 13x13 Dilate followed by 9x9 Erode to patch large holes. Equivalently, the six operations just described can be combined as follows: a 3x3 Dilate, then a 7x7 Erode, then a 17x17 Dilate, and finally a 9x9 Erode. The resulting filtered image has no internal holes but has lost edge localization. Usually an “aura” of about 3~4 pixels is generated around the foreground objects because the final erosion is smaller that the preceding dilation. This is desirable to increase the success of the merger of the two filtering paths in the region labeling routine. The parameters of the morphological operations were set empirically to segment people 3-5 ft from the camera in an indoor setting. The C++ implementation of this function was a sequence of alternating calls to generic erosion and dilation functions, both operating on square structuring elements of variable size. At the core of the dilation function is a MAX operation that is performed on the variable size set of pixels defined by the structuring element footprint. Similarly, at the core of the erosion function there is a MIN operation. Parametric to these functions were the input plane, the output plane, and the size of the structuring element to be applied. The functions expected and produced planes in which the data were byte-sized; Furthermore, the filter required the generation and consumption of three planes for storage of intermediate results between the calls to the morphological operations. During development, this flexibility was advantageous, as it allowed for easy experimentation with different sizes for the various morphological operations. The execution time for the C++ version of this filter was 101 milliseconds to process a 160x120 frame on a Pentium III running at 500 MHz. The assembly code differs from the C++ code in the following: x Does NOT use generic parametric functions for dilation and erosion, but rather, it performs only the particular dilations and erosions listed above. These operations are performed monolithically, using smaller temporary storage for a few lines of intermediate data, rather than whole planes. x Reduces the data to single-bit form, performing dilation with the POR instruction, and performing erosion with PAND – which are used to implement the bitwise MAX and MIN operations respectively thus operating on more pixels at a time. x Passes over the input and output frames in vertical strips, producing 32 bits of output per pass. In this

way, temporary storage is reduced to a single register per intermediate strip-line, rather than whole lines. x Frames are 8-byte aligned in memory to assure that SIMD accesses are optimal. x Factors out a large number of common subexpressions. x Uses the MMX SIMD instructions and prefetches the input data to reduce load latencies. Two versions of optimized assembly code for the filter were written, one optimized for the Pentium III, and one optimized for the Pentium II and Pentium with MMX Technology™. The Pentium III version differs from the Pentium II version in the following ways: x Uses prefetch instructions to reduce load latencies. x Uses the PMOVMSKB and PINSRW instructions to reduce the input plane from byte-sized representation to packed single-bit representation. The Pentium II version also does this reduction, but without the benefit of PMOVMSKB and PINSRW the same operation must be synthesized by several instructions. The execution time for the assembly version of this filter was 0.2 milliseconds to process a 160x120 frame on a Pentium III running at 500 MHz, ultimately delivering code that is 500 times faster than the C++ version. Much of this improvement can be attributed to the elimination of passes over temporary frame stores, pre-fetching, and operating on the binary data as packed bits (producing 32 columns of output at a time) instead of bytes.

2.2 Directional Morphological Filter The Directional Morphological Filter is an adaptive filter designed to blur the image except in regions close to object boundaries. The filter is composed of several morphological DEED operations, with one-dimensional structuring elements in distinct directions.[2] Each DEED operation consists of a 3-point Dilate, followed by a 3-point Erode, followed by a 3-point Erode, followed by a 3-point Dilate. The name of the operation is due to the sequence of elementary morphological operations. The DEED operation uses one-dimensional arrays for structuring elements. Four DEED operations compose the Directional Morphological Filter. The steerable one-dimensional structuring element is applied in four distinct directions: vertical, horizontal, and the two 45-degree diagonals. For every pixel the filter adaptively takes as output the maximal response among the four DEED operations.

This process can be interpreted as picking a preferential direction for blurring the image that implicitly avoids crossing object boundaries. The C++ implementation of this function was a straightforward use of two functions, a generic 3-point erosion function with a one-dimensional structuring element, and a generic 3-point dilation function with a one-dimensional structuring element. Parametric to the

stride from one point to the next in the structuring element. Four function calls were made for each of the four directions in which the filtering was done, implying a total of sixteen passes over input and output planes. The execution time for the C++ version of this filter was 94 milliseconds to process a 160x120 frame on a Pentium®III running at 500 MHz.

Figure 2: Three realizations of the Directional Morphological Filter. (a) Implementation with 12 MIN/MAX operations using 3 intermediate storage planes. (b) Implementation with 26 MIN/MAX operations that eliminates intermediate storage. (c) Adopted implementation with 18 MIN/MAX operations that eliminates intermediate storage. functions were the input plane, the output plane, and the

Two optimized assembly versions of the filter were written, one for the Pentium®III and one for Pentium®II and the Pentium® with MMX Technology™. The former differs from the latter in that it includes prefetch instructions to reduce load latencies, and in that the Pentium®III implementation takes advantage of the SIMD MIN and MAX instructions, whereas they have to be synthesized with several instructions in the earlier processors. The assembly code differs from the C++ code in these major ways: x It does NOT use generic Dilate and Erode functions, but rather, it performs the required operations simultaneously and avoids the need for any temporary storage planes. x By considering all four morphological operations monolithically, numerous common sub-expressions become apparent, and they are eliminated in the assembly version. x The assembly code uses the MMX SIMD instructions and pre-fetches the input data to reduce load latencies. It is implemented as four macroexpansions of a code sequence that performs the four morphological operations on all the inputs that contribute to a single, 8-wide SIMD output. The four macro-expansions relate to the four directions. Each expansion operates on nine 8-wide inputs to get the single output. The maximum is taken for the four outputs and that is the final output. The execution time for the assembly version of this filter was 3.26 milliseconds to process a 160x120 frame on a Pentium®III running at 500 MHz, about 30 times faster than the C++ version.

2.3 Region Flood Fill This function is the final component of the second filter path. It takes the post-processed output of the edge detector, an 8-bit edge magnitude map, as input. Post processing includes edge enhancement and linking to avoid spillage during the flood fill process. The Region Flood Fill process assigns a unique region number to each disjoint region whose boundaries are defined by the edge map. The set of mutually exclusive regions obtained is a tessellation of the original image, i.e. Region Flood Fill assigns every pixel to a region. The traditional recursive implementation of the Flood Fill algorithm[3] takes a pixel as input and uses it as the initial seed for flooding a single region that contains this

pixel and whose boundaries are defined by the edge map. If the seed is on a region boundary or if it has been already flooded it is simply discarded, else it is flooded and its neighbors are stacked as new potential seeds. If there are potential seeds stacked, we remove a new seed from the stack and perform this analysis again. If the stack is empty the region has been flooded. As our intent is to partition the whole image into a set of regions we augment the algorithm to automatically find initial seeds and execute Flood Fill until the whole image has been flooded.

Figure 3: Twelve unique flooding cases. Colored circles represent flood source. Colored squares represent effect of flooding on the 4x2 block. A simple optimization is to use 4-neighborhoods instead of 8-neighborhoods because it entails less insertion of potential seeds on the stack and avoids leakage across weak corners and joints. Even with 4-neighborhoods, each pixel inside a large and spreading region will be stacked as a potential seed an average of three times only to be discarded later in two of these instances. To further reduce the number of stacked seeds, we keep track of flood source, i.e. the direction from which the floodwaters are coming. Then, when this seed is flooded, only three of its four neighbors need to be stacked as potential seeds. To exploit the SIMD capabilities of current Intel processors, we implemented a flood-fill function that, instead of flooding a single point at a time, operates on aligned 4x2 block of pixels. There are 36 different possible sets of sources for floodwaters for a 4x2 block. If

the floodwaters come from the left, there are three possible cases – the left of the top line of the block, the left of the bottom line, or both. Likewise, if the floodwaters come from the right, there are three cases. If they come from above, there are 15 permutations of possible sources. Likewise for if they come from below. However, the effect of these 36 distinct cases on the pixels of 4x2 block can be mapped into 12 unique cases, as illustrated in figure 3. The points in the block that are adjacent to the flood source(s) in an 8-neighborhood are directly floodable. But to be flooded, the point can not be in a boundary, and must not be flooded already. Those pixels that are flooded become a source for propagating the floodwaters to other adjacent points inside the 4x2 block. Floodwaters that are carried to an edge of the block become a source for flooding for the blocks beyond those edges, which is handled by stacking those blocks for subsequent processing. Processing of a 4x2 block occurs as follows. The floodwater source case provides the index by which we select among twelve look-up tables. A one-byte value is read from the table using an eight-bit index, which comes from a mask we generate that indicates which of the eight bytes in the 4x2 block are floodable (i.e. are not in a boundary and not already flooded). The value read from the table is another mask that indicates which of the floodable points are actually reachable by the floodwaters, either directly from the flood source, or by propagation. As with the processing of a single point at a time, blocks tend to get stacked for processing from about three different directions. As a block is composed of eight points, the total number of iterations becomes about one eighth as many. An undesirable characteristic of the flood fill algorithm, either with the 4x2 block or with single point processing, is that it can thrash the data cache. With the floodwaters expanding on several fronts, the memory access pattern is erratic. We flood in the horizontal direction before flooding in the vertical to reduce this tendency. This is accomplished by stacking the vertical seeds before stacking the horizontal seeds. Two variants of this function were written, one for the Pentium®III, and one for Pentium®II and Pentium with MMX Technology™. This is so because the Pentium®III instruction PMOVMSKB is used to reduce the mask of floodable, reachable points from eight bytes to eight bits.

For the earlier processors, this operation has to be synthesized. Our Region Flood Fill takes 1.3 milliseconds to tessellate a 160x120 frame on a Pentium®III running at 500 MHz. We did not implement this function in C++, so timings are not available. Our C++ code implemented region segmentation based on watersheds. The 8-at-a-time (4x2 block) SIMD processing attained excellent performance. The tendency to thrash the data cache was attenuated by propagating the floodwaters horizontally first, doing a step of vertical flooding when all available horizontal flooding is complete.

3. Conclusions We discuss the implementation of a real-time background/foreground segmentation algorithm by exploiting the capabilities of the Pentium®II and Pentium®III processors. We demonstrate and quantify the massive benefit obtained via the optimization of a few critical sections. The case studies presented in the paper show the importance of proper memory handling, cache management and SIMD instruction exploitation to achieve massive optimization gains. The techniques presented here may be used in a plethora of other applications in computer vision and image processing where optimization is often required.

4. References [1] B. Jahne, “Digital Image Processing” Sec 11.2 Morphological Operators. 3rd edition 1995. Springer Verlag [2] D. Wang and C. Labit, “Morphological spatio-temporal simplification for video image segmentation”, Signal Processing Image Communication v. 11 1997, pp. 161170. [3] W. M. Newman and R. F. Sproull, “Principles of Interactive Computer Graphics” Sec 17.2. 2nd edition 1989 McGraw Hill. [4] D. Wang, “A Multiscale Gradient Algorithm For Image Segmentation using Watersheds”, Pattern Recognition Vol. 30, N. 12, pp. 2043-2052 1997.

des documents recommandant

[image: alt]

Scientific Background

digital beamformer. They also include all the digital processing needed for high performance color doppler. With the research work done by B. Robert at the ...

[image: alt]

Background - Drepanosite

CrÃ©teil, France â€“ C. ARNAUD â€“ Washington 2007 http://drepanosite.free.fr/. 1 ... N=19. N=5. N=6. HYDROXYUREA n=53. TRANSFUSION. PROGRAM n=42. + normal ... 1 year before. Post SCT. Nb Hospit/year. VOC /year. ACS /year p=6.10 9.

[image: alt]

Historical Background

6 indulgence stones (light grey wooden cubes). 1 â€œSuite 5â€� card. 24 House of Pleasure cards. 51 Letters of Indulgence (10 yellow, 11 blue, 15 red, 15 green).

[image: alt]

I. Background

morphology-semantics, which share fundamental vocabulary (person, number, gender ... 1. intermodular communication is only possible through a translator's office Polish and English complex consonantal onsets: a contrastive analysis.

[image: alt]

Relevant Devices Introduction Background

Background and theory of operation. â€¢ Hardware and software ... Background. An increasing can be in with respect to the ideal curve. //. // Case 1: Vout is ...

[image: alt]

Background Color - Pierre Migeot

November 2018 - December 2018. [Concept Artist]. MIKROS IMAGE. 'AstÃ©rix: le secret de la potion magique' animated feature film - M6 SND. February 2018 ...

[image: alt]

Academic background Work experience

Franck Le Rhun mail. : 23 avenue de ... et AÃ©rotechnique) of Poitiers. ... conception. 2001 : Scientific a-level after three years in LycÃ©e La ColiniÃ¨re in Nantes.

[image: alt]

EDUCATIONAL BACKGROUND PROFESSIONAL EXPERIENCE

2008. Baccalaureat Certificate. A level with Honours in international high school Victor Hugo. PROFESSIONAL EXPERIENCE. 2010 â€“ 2012. Personal Teaching.

[image: alt]

Corporate Presentation Template - Black background

Gigamon triggers alarms if any unauthorized connections are made to GigaVUE appliance. GigaSMART technology masks confidential data. New connections.

[image: alt]

PROFILE PROFESSIONNAL BACKGROUND Nicolas GAKRELIDZ

Datamining project Director : CRM Analytics deployment. âˆ’. Benchmark, POC and solution's choice : SPSS Clementine, Textmining, Predictive Enterprise.

[image: alt]

Background Information Anisotropic Interactions - GERM

crystal around an axis perpendicular to the magnetic field and measuring the Î¸. R 0 0Î¸, ,. (.) Î¸. R 0 Î¸ 0 glass-transition temperature. The peptide is labelled ...

[image: alt]

CHAP I â€“ GENERAL BACKGROUND

They are therefore key cannot be altered by rotation of groups or atoms around single bonds (enantiomers ; isomers In the case of materials such as ionic and metallic crystals, plastic deformation occurs through primary Numerous met

[image: alt]

Background Present study - DREPANO-Site

Stem Cell Transplantation (SCT). â–« Indication of intensive therapy and available geno- identical donor. Present study. â–« SCD Patients. â–« Screened as newborns.

[image: alt]

Segmentation and targeting

Adapted from Anderson, Narus and Narayandas. â†’ Used criteria must reflect differences in needs, buying behavior, accessibility, potential etc. Definition ...

[image: alt]

Campus Virtualization and Segmentation

MAC Auth Bypass. Web Based Proxy Auth. VLAN/.1Q. GRE. VRF-Lite. MPLS. ACL. Firewall ... Cisco Confidential. JMB. 11. Data Path Virtualization. â–« Tags. 802.1q. Others (DSCP,. CTS) switchport trunk allowed vlan 2000-2003 switchport mode trunk .

[image: alt]

CS6270: Lecture 2 - Background - NicDumZ

rs rt rd register. Register (direct) op rs rt immed. Immediate. Displacement op rs rt Use the information we have accumulated (ex: control signals for Step 1) to ...

[image: alt]

QR Decomposition Based Background Subtraction

QR-Decomposition has been proposed. ... classification problem based on P(B|x), where x is the pixel value at time t, ... Singular Value Decomposition. 1.

[image: alt]

Static Photon Emission Background - eufanet

â€šoptical waveform' from normal and faulty latch pair fail example design analysis: Ref J.C. Tsng, IBM fail reference. Static Photoemission of Dynamic Signal ...

[image: alt]

An Image Segmentation Technique

capabilities of this technique are shown in. Section 3. 2. Segmentation based on ... gradient. The following figure (figure 2) illustrates our algorithm: Figure 2.

[image: alt]

Segmentation in electron microscopy images

SLIC Superpixels,EPFL, Technical Report, Nr. 149300, June 2010. R. Achanta, A. Shaji, ... constrained. â—‹ Novel, general way to solve many learning problems ...

[image: alt]

CONFOCAL MICROSCOPY SEGMENTATION USING ACTIVE

ity density functions (pdf) describing foreground and background re- gions. The most ... iteratively evolve an initial curve towards the boundaries of target.

[image: alt]

Segmentation-driven recognition applied to

4 our experimental results on a database of real handwritten incoming mail Milgram, J., R. Sabourin and M. Cheriet, â€œAn hybrid classification system.

[image: alt]

segmentation dimages par modeles amfm

Are you looking for segmentation dimages par modeles amfm application aux images sonar et PDF?. If you are areader who likes to download segmentation ...

[image: alt]

local kernel color histograms for background

they lack any spatial information: two images can ... So, bin by bin comparison measure can lead are available from the web1 in color with a 160Ã—120.

×
Report Background Segmentation

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

