

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

AVC DECODER ONTO THE ADRES

both H.264/AVC decoder and other demanding applications. This paper describes ... times that of the H.263 baseline [4]. 3. ADRES ... urable embedded system) architecture is shown in Figure 2. Like other meet real-time requirements without raising clock rate. The ... schedule on a Pentium M 1.4GHz/Linux PC. The loop ...

 Télécharger le PDF

 99KB taille
 1 téléchargements
 296 vues

 commentaire

 Report

MAPPING AN H.264/AVC DECODER ONTO THE ADRES RECONFIGURABLE ARCHITECTURE Bingfeng Mei†, Francisco-Javier Veredas‡, Bart Masschelein† IMEC vzw, Kapeldreef 75, Leuven, B-3001, Belgium † Inﬁneon Technologies A.G., Munich, Germany ‡ Microelectonics Department, University of Ulm, Germany ‡ ABSTRACT

Video Bitstream

H.264/AVC video coding standard promises improved coding efﬁciency compared with other standards such as MPEG2. However, its computational complexity is also increased signiﬁcantly. Efﬁciently mapping H.264/AVC decoder onto a ﬂexible platform presents a big challenge to existing architectures and design methodology. This paper describes the process and results of mapping H.264/AVC decoder onto the ADRES architecture [1], which is a ﬂexible coarse-grained reconﬁgurable architecture template that tightly couples a VLIW processor and a coarse-grained array.

Video Out

Entropy Decoding

Inverse Quantazation

Reconstructed Frame

Deblocking Filter

Inverse Transform

+

Intra Predicator

Previous Frames

Motion Compensation

Fig. 1. Block diagram of an H.264/AVC decoder

2. H.264/AVC DECODER OVERVIEW 1. INTRODUCTION H.264/AVC (advanced video coding) [2] is emerging as an important video coding standard that promises higher coding efficiency and improved network adaption. It is likely to play an important role in next generation wireless communication, e.g., used as digital video broadcasting (DVB) on mobile phone. It possesses advanced features and requires high computational power. How to map it on a ﬂexibile architecture while still meeting performance and power requirements imposes a great challenge. Coarse-grained reconﬁgurable architectures have become important in recent years [3]. They usually consist of an array of computational and storage resources connected in certain topology. The array can be adapted to different computations by changing conﬁgurations. They can achieve high performance by highly parallelized computation while still retaining ﬂexibility close to processors. These advantages make them candidate architectures of mobile devices for both H.264/AVC decoder and other demanding applications. This paper describes the process and results of mapping H.264/AVC decoder onto the ADRES architecture [1], which is a ﬂexible coarse-grained reconﬁgurable architecture template that tightly couples a VLIW processor and a coarsegrained array.

0-7803-9362-7/05/$20.00 ©2005 IEEE

A block diagram of the generalized H.264/AVC decoder is shown in Figure 1. The video bitstream is ﬁrst parsed and decoded by an entropy decoder, either context-adaptive variable length coding (CAVLC) or more complex context-adaptive binary arithmetic coding (CABAC). Depending on the coding mode, each macroblock can be either intra-coded or inter-coded. At most time, macroblocks are inter-coded. An inter-coded macroblock is predicated by interpolation using a set of motion vectors and a set of previously stored frames. Unlike older video coding standards, each macroblock can be partitioned in 7 different ways, ranging from 4x4 block to 16x16 block, for the luminance component of the macroblock. Therefore, each macroblock might have from 0 to 16 motion vectors. The motion vectors have 1/4 pixel accuracy so that sub-pixel interpolation of the reference frame is necessary to generate the predicated macroblock. This is one of the most computational intensive parts of the AVC decoder. Following the inverse scan and quantization steps, inverse transforms are applied to the decoded residual blocks. There are three transforms used in H.264/AVC: a Hadamard transform for the 4x4 array of Luma DC coefﬁcient in intra macroblocks predicated in 16x16 mode, a Hadamard transform for the 2x2 array of chroma DC coefﬁcients and a DCT-based transform for all other 4x4 blocks. The transformed residual blocks are added to predicated blocks afterward. Another important feature of

622

the H.264/AVC decoder is utilization of deblocking ﬁlters. The ﬁltering is applied to the reconstructed picture frame to reduce the blocking artifacts introduced at block boundaries. The ﬁltering process is performed on the 4x4 block edges of both luminance and chrominance components, applied to both vertical and horizontal directions. The ﬁlters are highly adaptive. The type of the ﬁlters, the length of the ﬁlters, and their strength are dependent on several coding parameters as well as content related to the edge. With all these advanced features, the H.264/AVC is able to deliver lower bit-rate at the same quality. However, its computational complexity is also much higher. Horowitz et al estimates that the H.264/AVC baseline bit rate could be 35%-50% lower than that of the H.263 baseline 0, while the computational complexity of H.264/AVC baseline is 2-3 times that of the H.263 baseline [4].

3. ADRES ARCHITECTURE AND DESIGN FLOW OVERVIEW The overall ADRES (architecture for dynamically reconﬁgurable embedded system) architecture is shown in Figure 2. Like other similar architectures, it consists of many basic components, e.g., functional units (FU) and register ﬁles (RF), which are connected in a certain topology. The whole ADRES architecture has two functional views: a VLIW (very long instruction word) processor and a reconﬁgurable array. The reconﬁgurable array is used to accelerate the dataﬂowlike kernels in a highly parallel way, whereas the VLIW executes the non-kernel code by exploiting instruction-level parallelism (ILP). These two functional views share some resources because their executions will never overlap with each other thanks to the processor/co-processor model. Instruction fetch Instruction dispatch Instruction decode

DATA Cache

RF FU

FU

FU

FU

FU

FU

FU

FU

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

FU RF

VLIW view

Reconfigurable array view

Fig. 2. ADRES Architecture

To program such a complex architecture, we developed a C compiler. The core technology is a modulo scheduler which is capable of mapping a kernel (loop) onto the coarsegrained array in a pipelining way [5]. It solves the placement, routing and scheduling subproblems simultaneously. To map an entire application, the non-kernel code is compiled to the VLIW processor using the traditional ILP compilation techniques. The communication between kernel and non-kernel is automatically identiﬁed and handled by the compiler. 4. MAPPING H.264/AVC DECODER TO ADRES ARCHITECTURE We starts with an H.264/AVC decoder derived from the reference code [6] 7.5b version. The decoder is in-house optimized compared with the reference code (about 25% faster). 4.1. Profiling H.264/AVC Decoder The ﬁrst step of mapping is proﬁling the target application in order to identify which portions of the application are important. Many tools, e.g., Gprof, Quantify and VTune, can be used to obtain proﬁling information. However, these tools usually give proﬁling results when the application is executed on a host computer. Its characteristics is quite different from the ADRES architecture targeted. The ADRES compiler ﬂow can be also used for proﬁling. There is a switch that can be enabled to tell the compiler to map the entire application onto the VLIW part of the ADRES architecture. Then the simulator can simulate the application and print out various statistics, e.g., total cycles and total instructions spent in each function. This approach gives the designer more relevant proﬁling information since we try to identify kernels and move them from the VLIW processor to the reconﬁgurable array. We proﬁled the code against an 8-issue VLIW processor using bitstream foreman bf 264k (see Section 4.4 for its characteristics). Figure 3a shows time breakdown of different parts of the H.264/AVC decoder. Most time is spent on the motion compensation, deblocking ﬁlter and inverse transform. The overall performance is only 2.8 frames/second assuming that the VLIW runs at 100MHz. 4.2. Extracting and Optimizing Loops Proﬁling the application just gives a good indication where execution time is spent on different parts of application. The next step is to extract and optimize pipelineable loops, which are going to be mapped onto coarse-grained array, from these important parts. Obviously, motion compensation, deblocking filter and inverse transform are the ones we should focus on.

623

ferent too (Figure 3b). Now the motion compensation part becomes more dominant, while the CAVLC and other code become signiﬁcant too. 4.3. Compiling H.264/AVC Decoder on ADRES Architecture

Fig. 3. Proﬁlings of the H.264/AVC decoder: a) before optimization; b) after optimization

Motion compensation is the most dominant part of the H.264/AVC decoder. Most time is spent on interpolation of both luminance and chrominance components. The main optimizations applied here are loop coalescing, merging loops, loop unrolling, etc. In the get block function, which calculates luminance interpolation, there are 15 nested loops. After optimization, they are simpliﬁed to 8 single loops ready for pipelining. Due to basic 4x4 block size and heavy loop unrolling, most loops only have small number of iterations (4 or 9). That introduces considerable pipelining overhead. We extract get block1 to get block8 for luminance interpolation and mc chroma1 to mc chroma2 for chrominance interpolation. For the inverse transform, the main optimization is to reduce pipelining overhead. A pipelined loop includes prologue and epilogue. These are times when the pipelined are ﬁlled and emptied. During prologue and epilogue, the parallelism are low because not all the pipeline stages are occupied. Increasing the number of total iterations helps reduce the overhead. The original inverse transform is applied to every 4x4 block. After analyzing code, it is applied to the 16 4x4 blocks of a macroblock. Therefore, we increase the number of iterations from 4 to 64 for both loops in inverse transform. Thus the pipelining overhead is mostly hidden. Two kernels, itran1 and itrans2, are extracted here. The deblocking ﬁlter is also heavily optimized. Many redundant computations are removed and the strength values are precomputed and used by all ﬁltering (luminance and chrominance, vertical and horizontal). These loops all contain complex control ﬂows (if-else tree) due to the highly adaptive algorithm speciﬁed in the standard. Apart from these main parts, we also extract some small loops which account for considerable execution time: alloc picture1 and alloc picture2 are two loops that clean data structures after decoding each frame; avg block and copy mv are two small loops extract from motion compensation part. These ADRES-speciﬁc optimizations together with other optimizations produce much better performance: 13.5 frames /second at 100MHz on a VLIW. However, it still cannot meet real-time requirements without raising clock rate. The characteristics of the H.264/AVC time distribution are dif-

In the ADRES design ﬂow, usually most design efforts are spent on identifying, extracting and optimizing loops at the source-level. After these steps, our compiler can automatically map these the loops to the coarse-grained array in a pipelined way and compile the remaining code to the VLIW processor. Sometimes, if a loop can not achieve expected performance, we may need to go back to source code and re-optimize the loop. This is an iterative procedure. We instantiate an instance from the ADRES architecture to conduct the experiments. It is an 8x8 array that consists of 64 FUs, which include 16 multipliers, 40 ALUs and 8 load/store units. Each FU is not only connected to 4 nearest neighbor FUs, but also 4 FUs with one hop away along the vertical and horizontal directions. There are also 56 distributed RFs and a VLIW RF. A distributed RF is connected to the FU next to it and the FUs in diagonal directions. The scheduling results for kernels are listed in Table 1. The second column of Table 1 is the number of operations of the loop body. Initiation interval (II) means a new iteration can start at every II cycle. It is also equivalent to the number of conﬁguration contexts needed for this kernel. Instructionper-cycle (IPC) reﬂects the parallelism. Stages refer to total pipeline stages which have an impact on prologue/epilogue overhead. Scheduling time is the CPU time to compute the schedule on a Pentium M 1.4GHz/Linux PC. The loop sizes of these kernels vary signiﬁcantly. For the ﬁrst 12 loops, we can execute around 30 instructions per cycle. For the last 4 simple loops, the parallelism are mainly limited by memory bandwidth. 4.4. Simulation Results To verify the complete application, we use a co-simulator to simulate the compiled application using several bitstreams. All these bitstreams are CIF format (352x288). foreman is a simple bitstream with less motion, whereas mobile is much more complex and has more motion. bf and nobf indicates whether there are B-frames or not. The last part of the bitstream names indicates the bit-rate at 25frames/sec. The simulation results are listed in Table 2. The second and the third columns are the results of performing H.264/AVC on the VLIW and the ADRES architecture respectively; the last column is kernel/overall speed-up over the VLIW respectively. The results shows for we can achieve 4.2 times of kernel speed-up. The overall speed-up is around 1.9 times for low bit-rate bitstream and 1.3 times for high bit-rate bitstream. In mobile nobf 1366k, the CAVLC part, which is

624

kernel

get block1 get block2 get block3 get block4 get block5 get block6 get block7 get block8 mc chroma1 mc chroma2 itrans1 itrans2 alloc picture1 alloc picture2 avg block copy mv

no. of ops 27 113 119 74 95 82 97 91 79 145 24 63 33 45 32 44

II

IPC

stages

1 4 4 3 3 3 3 3 3 5 1 2 3 5 2 4

27 28.3 29.8 24.7 31.7 27.3 32.3 30.3 26.3 29 24 31.5 11 9 16 11

10 6 6 6 7 6 7 10 10 9 13 11 2 2 4 3

sched. time (secs) 44.5 479.6 459.4 212.5 243.0 227.8 234.2 328.8 541.5 1783 60.6 204.8 48.0 194.7 90.0 226.6

become more important. Some efforts should be spent to optimize them as well. 5. CONCLUSIONS The H.264/AVC decoder is becoming an important application for next-generation wireless communication thanks to its higher coding efﬁciency. Meanwhile, due to its computational complexity, it presents a big challenge for existing programmable architectures and design methodology. This paper presents the process and results of mapping an H.264/AVC decoder onto the ADRES architecture, which tightly couples a VLIW processor and a reconﬁgurable array. 16 kernels of the H.264/AVC decoder are accelerated on the reconﬁgurable array. The speed-up is 4.2 time for kernels and 1.9 times for overall performance over an 8issue VLIW. A CIF format real-time video bitstream can be decoded by the ADRES architecture at as low as 100 MHz. This study shows that the ADRES architecture and its compiler provide many features that are critical for mapping such a complex application.

Table 1. Scheduling results of kernels bitstream

frames/s (VLIW)

frames/s (ADRES)

foreman bf 264k foreman nobf 308k mobile nobf 320k mobile nobf 1366k

13.5 15.0 15.9 9.47

25.4 26.2 30.9 13.3

speed-up (kernel /overall) 4.2/1.88 4.2/1.75 4.3/1.94 4.3/1.41

Table 2. Simulation results of the mapped H.264/AVC decoder (at 100MHz) not mapped onto the reconﬁgurable array currently, becomes more signiﬁcant so that the overall performance degrades considerably. Currently, we only mapped 62% of execution time. It means the overall speed-up is at most 2.6 times according to Amdahl’s law. To further accelerate the application, we have to map more loops onto the reconﬁgurable array. The main obstacle is how to handle highly control-intensive loops such as deblocking ﬁlter and CAVLC decoder. Second, the performance of some mapped kernels are hampered by high pipelining overhead. For example, we didn’t take advantage of the fact that a macroblock can be partitioned to sub-blocks from 4x4 to 16x16. Instead, all the luminance interpolation is performed on 4x4 sub-block, resulting in high pipelining overhead. A rough esitmation shows that we can easily double the performance of many get block kernels by applying interpolation on bigger sub-block such as 16x16 if possible. This requires considering program restructuring. Finally, after main kernels are optimized and mapped onto the reconﬁgurable array. Some initially insigniﬁcant parts

6. REFERENCES [1] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “ADRES: An architecture with tightly coupled VLIW processor and coarse-grained reconﬁgurable matrix,” in Proc. of Field-Programmable Logic and Applications, 2003, pp. 61– 70. [2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003. [3] R. Hartenstein, “A decade of reconﬁgurable computing: a visionary retrospective,” in Proc. of Design, Automation and Test in Europe (DATE), 2001, pp. 642–649. [4] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC baseline proﬁle decoder complexity analysis,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 704–716, July 2003. [5] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “Exploiting loop-level parallelism for coarse-grained reconﬁgurable architecture using modulo scheduling,” in Proc. of Design, Automation and Test in Europe (DATE), 2003, pp. 296–301. [6] “H.264/avc software coordination,” http://iphome.hhi.de/suehring/tml.

625

2005,

des documents recommandant

[image: alt]

AVC: an evaluation

losses, Forward Error Correction (FEC) and error resilience schemes are commonly used. In this paper, we evaluate the performance of error tolerance schemes ...

[image: alt]

AVC and SVC streams

widely used MPEG-2 one. The aim of Beside its traditional tasks, the video encoder takes the ... them into the systematic error correction encoder to generate.

[image: alt]

STb7109 High definition AVC,VC-1 and MPEG-2 decoder with

MPEG1 I/II, MP3, Dolby. Â® digital, AAC LC, high efficiency AAC. â–¡ USB 2.0 host controller. â–¡ DVR capable with a serial ATA HDD interface. PART NUMBERING.

[image: alt]

AVC video streams

Figure 2 Å“ Principle of coding/transmission/decoding chain with encryption ... values of the coefficients obtained after the zigzag reordering of the block. 38a.pdf Recommendation for Block Cipher Modes of Operation -. Methods and ...

[image: alt]

DECODER CIRCUITS

ORDER CODE : M145026D Figure 7 : M145027 Flowchart Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under ...

[image: alt]

AM-HiRK Decoder

General Remote Control Systems. â€¢ Garage Door For further information on Antenna design please see our full product catalogue. Serial Data ... the KeeLoq packet there will be a minimum gap between each serial data string of 150mSec.

[image: alt]

Piggybacking onto Wiktionary - REDAC

Moreover, these resources froze as soon as the projects ended while ... Existing resources have been used in [6] to build WOLF, a free French ... information is not easily feasible. 15 Wiktionaries' dumps are available at: http://download.wikip

[image: alt]

Volkswagen VIN Decoder

2004 Volkswagen V.I.N. Decoder. 4 = 2004. Country of origin. M Manufacturer. Vehicle type. - Restraint system cool (position 7 & 8). Model on Engine. A Series.

[image: alt]

Projection onto manifolds, manifold denoising ... - Florent Segonne

the reliance on a parameterized representation and the manual positioning of the Laplacian eigenmaps are given by the solution flem : ... constructed, the coefficients of which measure the strength of the different and Materials Sciences.

[image: alt]

La thrombolyse des AVC: contre

O Vu les conditions de travail dans nos urgences, en présence d'autres patients ... The European Cooperative Acute Stroke Study (ECASS). JAMA 1995 ; 274 ...

[image: alt]

2006 Volkswagen VIN Decoder 2006 Volkswagen VIN Decoder

A = Phaeton 5 Seating Position. Passat auto. trans. Jetta 2.0T ***. B = Golf 2dr GL***. Phaeton 4 Seating Position. Touareg V6. Passat 3.6L 4Motion. C = Touareg ...

[image: alt]

MULTISTANDARD CHROMA DECODER

Supply of the Analog Part. 19. VERF1. Internal Voltage Reference. 20. YOUT. Luminance Output. 21. AD_SEL. Address Selection. 22. SVHS. SVHS Input. 23.

[image: alt]

Refinable maps onto locally n-connected compacta

Electron-deficient vanadium (III) alkyl and allyl complexes with amidinate ligands were prepared from mono-and bis-amidinate vanadium chloride precursors. Ethene is slowly oligomerized catalytically by the neutral [amidinate] 2V (alkyl) system at 80Â

[image: alt]

BCD TO DECIMAL DECODER

Data Inputs. 8 Plastic DIP16 (0.25) MECHANICAL DATA. DIM. mm ... Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

[image: alt]

R8249 Hornby Locomotive Decoder

The locomotive address, acceleration and deceleration plus other features of the Hornby Decoder can ... Email: ... List of supported CVs.

[image: alt]

74154.pdf (4-16 DECODER)

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise ...

[image: alt]

AVC sensivitity for error protection in wireless

This method relies on a semi-analytical model of the video stream sensitivity, that allows to predict the resulting distortion depending on the channel.

[image: alt]

RF-355 AUTOMATIC BANDS DECODER

Mar 25, 2013 - TO AVOID ERRATIC FREQUENCY DETECTIONS DUE TO SSB OR CW PULSES. THIS AVOID ANY UNWANTED (AND UNAUTHORIZED) ...

[image: alt]

PLL stereo decoder - Matthieu Benoit

Jun 2, 1989 - switch for radio or cassette function and a 228 kHz voltage-controlled ... is prevented by the use of two demodulators, one driven by the 38 kHz ...

[image: alt]

R8247 Point & Accessory Decoder - Hornby

The red led will flash up to seven times during which the decoder ... Should you wish not to name the point/accessory press Menu to return to the main screen.

[image: alt]

decoder l autre dbid 1068h

[image: alt]

On the Properties of Neural Machine Translation: Encoder--Decoder ...

25 oct. 2014 - 2012) and (Boulanger-Lewandowski et al., 2013). Recently, the authors Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical ...

[image: alt]

On the Properties of Neural Machine Translation: Encoder--Decoder ...

25 oct. 2014 - Similarly, the authors of (Cho et al., 2014) proposed to use an RNN to encode and decode a pair of source and target phrases. At the core of all ...

[image: alt]

Mapping Information onto 3D Virtual Worlds

to solve, regarding information management, were related to the distributed nature of characteristics necessary for distinguishing graphical tech- niques information ... Void = do not arrange children (transparent layout manager). Fit = Resize t

×
Report AVC DECODER ONTO THE ADRES

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

