

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Automatic test generation with AGATHA

1 Introduction. Formal methods allow system analysis and test generation from specifications. Union Internationale des TELECOMMUNICATION, Langage de ...

 Télécharger le PDF

 110KB taille
 7 téléchargements
 331 vues

 commentaire

 Report

Automatic test generation with AGATHA Céline Bigot, Alain Faivre, Jean-Pierre Gallois, Arnault Lapitre, David Lugato, Jean-Yves Pierron, Nicolas Rapin CEA/LIST/DTSI/SLA, CEA Saclay – Bat. 451 91191 Gif sur Yvette Cedex, France {celine.bigot, alain.faivre, jean-pierre.gallois, arnault.lapitre, david.lugato, jean-yves.pierron, nicolas.rapin}@cea.fr

Abstract. This tool demonstration paper describes the AGATHA toolset, developed at CEA/LIST. It is an automated test generator for specifications of communicating concurrent units described using an EIOLTS (Extended Input Output Labeled Transition System) formalism which can be extracted, for example, from UML specification.

1 Introduction Formal methods allow system analysis and test generation from specifications. This provides an early feedback on a system’s behaviour. The economic goal of this specification analysis step is considerable, as it simultaneously reduces cost and time of validation, while increasing system reliability. But these formal techniques are generally quite complex in their use: that is why such techniques have not, at this time, penetrated the industrial domain. One way to decrease this complexity is to provide tools in which the use of those techniques are automated. This tool demonstration paper describes the AGATHA toolset, developed at CEA/LIST. This toolset is an automated test generator from specifications of communicating concurrent units described using an EIOLTS formalism (Extended Input Output Labeled Transition System). At the present time, AGATHA deals with specifications written in the following languages : UML (the Unified Modeling Language) [1], SDL (Specification and Description Language) [2,3], STATEMATE language [4], ESTELLE [5]. For each of these languages there is a corresponding translator, in the toolset, that transforms the original specification into the EIOLTS language used by AGATHA. Figure 1 shows the main windows of the AGATHA toolset. The presentation tool will focus on UML specification respecting modelling rules and some UML specializations. These specialization are attached or dedicated to the European project AIT-WOODES [6].

2 The AGATHA kernel There exist several ways to validate systems specifications. A first one consists in theorem proving and model checking. These kinds of techniques have proved suc-

cessful for the validation of critical parts of systems. But two major drawbacks to these techniques remain: 1. the combinatorial explosion due to variable domains for the model checking, 2. a need for high-level skills from the developer –who must be aware of formal methods fundamentals– for theorem proving. Automatic test generation is another way to tackle the problem of systems validation.

Figure 1 : Main windows of the AGATHA toolset.

The solution adopted in AGATHA is to provide an exhaustive symbolic path coverage. In the future, this criterion will help to use AGATHA for verification. If we want to demonstrate the truthfulness of a property on a specification, because of the exhaustivity obtained with AGATHA, we just have to demonstrate it on the obtained paths. The following subsections are an overview of the different formal techniques used in AGATHA in order to reach this exhaustive symbolic path coverage. Main principle: symbolic execution. The major drawback of numeric techniques is the combinatorial explosion due to variable domains. These domains can be huge, sometimes even infinite. AGATHA uses “symbolic execution” as defined by [7], [8], [9]. Symbolic calculus allows the handling of such domains because computing all the

behaviours is not equivalent to trying all the possible values for inputs. Instead of giving values for inputs, they keep their status of symbol all along the execution. So each behaviour no longer depends on the result of a calculus being completely performed, but on an expression representing constraints on the variables being denoted by the symbols of entries. Each transition fired from a point of the execution adds a new constraint on the variables. At any point of the execution, the entire constraint is called "path condition". A symbolic state may represent an infinite set of numeric states. The execution tree resulting of the AGATHA computation is a finite tree of symbolic states. The construction of the execution tree is subordinated to reduction procedures in order to eliminate as many redundant paths as possible with different tactics. A n-tuple of a symbolic node denotes a list of actual control nodes for each of the n concurrent modules. Different heuristics to compute comparison procedures for each symbolic node are also used (inclusion and equality procedures). Moreover, we currently work on automating several abstraction techniques to reduce complexity and to terminate calculus in any case in order to obtain an exhaustive execution graph. Simplification procedures. The deeper a point of execution, the bigger the expression representing its path condition. Symbolic expressions of variables may also rapidly grow. That is why a simplification procedure must be applied "on the fly" in order to shorten expressions and detect useless paths. As of today we use a simplifier based on rewriting techniques. The rewriting engine is Brute [10] that is a part of the CafeOBJ toolset. The rewriting rules file of AGATHA is actually composed of more than three hundred rules. These rules allow both to maintain symbolic expressions within a reasonable size range, and to obtain normal forms for the expressions, easing the comparison between expressions needed in algorithms such as comparison procedures. We also use a polyhedric tool, Omega [11], in order to compute the inclusion and equality procedures. Using this tool we are able to compare variables domains of two symbolic nodes. Composition. The symbolic execution process is performed on one module, but the global application is generally composed of many, so they have to be merged. There are two possible ways to merge modules. The first solution is to use the composition introduced by Milner [12]. The global module is made out of the transitions of its components, except those that are synchronized by a rendezvous. This is due to the fact that we only have communication with rendezvous in the EIOLTS input language of AGATHA. Each rendezvous is replaced by an equivalent transition obtained by eliminating the exchanged parameter. The other solution is to compute the symbolic execution on each module first and then merge the results to obtain the global application behaviour. The major benefit of this latter approach is the parallelization of the calculus: execution trees for each module can be computed separately. At the moment, only the first solution is implemented in AGATHA. The second option will be integrated soon.

Constraints solvers. Once the execution tree is computed, the whole behaviour of the system is exhibited. Livelocks and deadlocks are visible. We use the DaVinci [13] graphical interface to represent the execution tree. A constraints solver, the Presburger tool Omega, may then be used to get the appropriate values for symbolic variables satisfying path conditions. Then it generates numerical test input sequences. We elect to generate one numeric test for each symbolic test which represents an equivalence class of numeric tests. So the constraints solver computes only one solution for each path condition. Figure 2 shows the overall architecture of the AGATHA toolset

Figure 2 : Architecture of the AGATHA toolset.

3 Transcription of UML models into EIOLTS We connect the AGATHA toolset to the environment of the AIT-WOODDES project that offers a method for designing UML specification, an automatic code generator and validation tools. We implement the translation algorithms in the Objecteering 5 UML modeling tool [14]. In this context we generate tests for UML models designed with the ACCORD methodology [15]. The accepted UML models are designed with class diagrams. Each class should have one or more statechart diagram that represents its dynamic behaviour. Collaboration diagrams are used to model interactions between instances of classes. The results provided by AGATHA will be turned into UML sequence diagrams. The translation from UML to EIOLTS is a two-step process illustrated in Figure 3. First, the UML specification is checked against consistency rules to verify that the

translation modules will be able to translate the specification to EIOLTS; this module also transforms the UML model into an equivalent UML model, only using a restricted set of UML’s elements. Secondly, another module translates this restricted UML into an EIOLTS file. The subset of UML that is used is designed to achieve the same level of simplicity in the description of the state machines than the EIOLTS input language of AGATHA. The generated EIOLTS file is processed by the kernel of AGATHA. Finally, a module analyses the resulting file, translates these results in sequence diagrams and bring these charts back into the Objecteering CASE tool.

D e ve lo p e d to o ls

D e ve lo p e d to o ls

In tera c ts

UML M odel

T w o -s te p s p e c ific ation g e n era to r

E IO LT S S p e c ific atio n

UML fe e d b a ck

R e s u lts pa rs e r a n d a n a lys e r

R e s u lts (E x h a u s tiv e P a ths)

AG ATH A

U M L E d ito r (O bje cte e ring)

U ser

Figure 3 : Translation from UML to EIOLTS.

6 Conclusion In this tool demonstration paper we have described the AGATHA toolset allowing software developers to validate UML specifications. This toolset may be completely transparent for the user and definitely user-oriented. Some improvements are foreseen: enriching AGATHA with theorem proving in order to prove properties about the system or connecting an existing model checker to AGATHA. For very large or complex systems AGATHA will also embed new automatic simplification procedures, not working on generated expressions, but on the model itself, and based on abstraction principles. Finally a selection of relevant tests will be performed, along with an estimate of their covering, with respect to criteria or test purposes defined by the user.

References 1. Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling Language Reference Manual, Reading, MA: Addison-Wesley, 1998. 2. Union Internationale des TELECOMMUNICATION, Langage de programmation – Langage de description et de spécification du CCITT – Norme SDL, Recommandation UIT T Z.100, 03/93. 3. D. Lugato, Nicolas Rapin, J.-P. Gallois, Verification and tests generation for SDL industrial specifications with the AGATHA toolset, Proceeding of Workshop on Real-Time Tools, CONCUR’01.

4. D. Harel, Statecharts: a Visual Formalism for Complex Systems, Science of Computer Programming, vol. 8, pp. 231-274, 1987. 5. ISO, Information processing system, system interconnection, a formal description based on an extended state transition model, Geneva, 1997. 6. AIT-WOODDES Project N IST-1999-10069, http://wooddes.intranet.gr/. 7. L. A. Clarke. A system to generate test data and symbolically execute programs, IEEE Transactions on software Engineering, vol. SE-2, nº3, September 1976, pp 215-222. 8. J.C. Huang. An approach to program testing, ACM computing surveys.7(3): 113-128, September 1975. 9. J. C. King. Symbolic execution and program testing, Communication of the ACM,19(7). July 1976. 10. M. Ishisone, T. Sawada, Brute: brute force rewriting engine, GAIST, January 2001, http://www.theta.theta.ro/cafeobj. 11. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, D. Wonnacott, The Omega Library version 1.1.0, University of Maryland, November 1996, http://www.cs.umd.edu/projects/omega. 12. R. Milner. Communication and concurrency, Prentice Hall International, 1989. 13. M. Worner, M. Frohlich, DaVinci Tool version 2.1, Bremen University, July 98, http://www.informatik.uni-bremen.de/davinci. 14. Objecteering Tool version 5, Softeam Paris, 2001, http://www.softeam.fr. 15. S. Gérard, N. S. Voros, C. Koulamas, Efficient system modeling of complex real-time industry; networks using the ACCORD/UML methodology, DIPES 2000.

des documents recommandant

[image: alt]

Online Test Generation with PathCrawler. Tool

Introduction. Structural testing is widely used in indus- trial verification processes of critical software. Automation of test case generation brings obvious benefits.

[image: alt]

Test Case Generation with PATHCRAWLER ... - Nikolai Kosmatov

In current software engineering practice, testing [27, 25, 34, 3] is the primary approach Two ways to instrument a label: direct and tight instrumentation. Fig. 6.

[image: alt]

Automatic Ontology Generation

In order to give factual answers to these questions, we provide in this article the following ... We will start, in Section 2, with the description of the important aspects of an ontology, with ... A third characteristic an ontology must have is the

[image: alt]

Validation and automatic test generation on UML models: the

Electronics Notes in Theoretical Computer Science 66 No.2 (2002) offers a method for designing UML specification, an automatic code generator and communications on top of A-EIOLTS's synchronous rendezvous model. The solution we wanted

[image: alt]

All-Paths Test Generation for Programs with ... - Nikolai Kosmatov

path-test generation based on symbolic execution, it is con- venient to distinguish two types: Eq(a[U], V) represents the delayed equality a[U] = V, and Aff(a[U] ...

[image: alt]

Automatic Generation of Bio-inspired Retina-Like

processed. The reference [6] can be considered for consulting the overall hard- ware scheme. A typical class of filters used to mathematically describe retinal.

[image: alt]

Combining Static Analysis and Test Generation for

2s. 5 QuickSort partition. 50. 8. 1. 4. 4. 1s. Fig. 1. Examples and static analysis results strategy. PathCrawler alone. PathCrawler all-threats. SANTE bugs paths.

[image: alt]

A New Method for Interoperability Test Generation

methods derived from global criterion iopG, not in methods using bilateral criterion iopB. â‡’The idea: interoperability test generation based on bilateral criterion ...

[image: alt]

Beyond Do Loops: Data Transfer Generation with

We are grateful to FranÃ§ois Irigoin, Ronan Keryell, and Fabien Coelho for their valuable advices. References. 1. Alias, C., Darte, A., Plesco, A.: Program Analysis ...

[image: alt]

constitution test with answers pdf

Marmontel, Contrary Thinking Selected Essays Of Daya Krishna, Cooking Light Soups Stews Tonight. 140 Simple, Courtship And Love Among The Enslaved In ...

[image: alt]

Generation of Cost Matrices with Parameterized Correlations

Apr 10, 2013 - Heterogeneities for Heterogeneous Computing Systems from Ali, Siegel, Maheswaran, Hensgen and Ali. (2000) is unsatisfactory. The method ...

[image: alt]

Chapter 15: Automatic Grid Generation Using Spatially Based Trees

This chapter examines the use of spatially based trees defined by recursive ... is the definition of a rectangular-piped, typically a square, which covers the ...

[image: alt]

Beyond Do Loops: Data Transfer Generation with

usually plugged in a host computer using the PCI-Express bus, that can provide important ... The main drawback of these accelerators lies in their programming model. SIGPLAN symposium on Principles and Practice of Parallel Programming. pp. ...

[image: alt]

Interactive Random Graph Generation with ... - Evelyne Lutton

of algorithms and layouts, for example if one wants to evaluate graphs with encoding that requires the design of specific genetic operators to ensure efficient and maximal values, while the white circle indicates the desired target value.

[image: alt]

PLANOR : program for the automatic generation of regular

Ex a m pl e 2.1 :4 f a ctors a nd 2 3 ex p eriment al u nits. directly by adding one of the non-zero vectors with coordinates

[image: alt]

Automatic Circuit Identifier with Analog Receiver

Locating A Circuit Breaker or Fuse: 1. Plug the transmitter into the receptacle. 2. Go to the circuit breaker panel box. 3. Turn the receiver on. 4. Place the flat surface of the tapered end of the receiver directly onto the circuit breaker or fuse a

[image: alt]

A Semantics ofr UML Specification to be validated with AGATHA

Embedded systems integrate an increasing software part which is more and more ... Another LSP laboratory team has defined a software development c!e can send the message e to another component which contains a transition c? x.

[image: alt]

Chapter 15: Automatic Grid Generation Using Spatially Based

Section 15.2 outlines spatial subdivision techniques and associated trees that have been used in automatic mesh generation. Section 15.3 describes the basic ...

[image: alt]

les classiques agatha pdf

Are you looking for les classiques agatha PDF?. If you are areader who likes to download les classiques agatha Pdf to any kind of device,whether its your laptop, ...

[image: alt]

Automatic Generation of Self-controlled Autonomous Agents - CiteSeerX

In section 3, we will describe each stage of con- trol application: the system description, the laws descrip- tion and the automatic generation of self-controlled ...

[image: alt]

Automatic Generation of Self-controlled Autonomous Agents - CiteSeerX

oper. We are particularly interested in monitoring software which consists in inserting software probes into the program to detect events [3]. The automation of the ...

[image: alt]

Automatic Generation of Seamless Mosaics over Extensive Areas from

photo shots that must be combined to produce a radiometrically and geometrically ... However, the problem ... To illustrate the concept of a stretched area, let's imagine we are observing a spherical object as shown in Figure 5. P. ÅŒP ... image spac

[image: alt]

Imprimer Agatha AWS

fabrique majoritairement ses produits en France et en Europe. La distribution de ses produits s'effectue par des points de vente exclusifs : Majoritairement en France par ses propres boutiques, au nombre de soixante-dix, et des boutiques franchisÃ©s,

[image: alt]

Experimental test of two models for the generation of ... - Research

Department of Medical Physics and Biophysics, University of Nijmegen, P.O. Box 9101, ... neural basis for the common-source model is dis- cussed ... ing - Nonlinearity - Neural coding - Models 3) Finally, there is the unresolved question of.

×
Report Automatic test generation with AGATHA

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

