Aucun titre de diapositive - eric semail

The system is modeled in a generalized Concordia frame and a graphical description is used ... Both controls are analyzed in the generalized Concordia frames.
1MB taille 0 téléchargements 285 vues
Modeling and Control of a seven-phase Claw-Pole Integrated Starter Alternator for Micro-hybrid Automotive Applications A. Bruyere*,**, E. Semail*, A. Bouscayrol*, F. Locment*, J.M. Dubus**, J.C. Mipo** * Arts&Métiers ParisTech and University of Lille, L2EP, Lille, FRANCE ** Valeo Electrical System, Créteil, FRANCE

CNRT Futurelec

Lille

ABSTRACT This study deals with the modeling and the control of a new high power 12V starter-alternator. This system is used to bring micro-hybrid functions to standard Internal Combustion Engine (ICE) vehicles. The drive is composed of a seven-phase synchronous claw-pole machine with separate excitation, supplied with a seven-leg Voltage Source Inverter (VSI) designed for low voltage and high current. The system is modeled in a generalized Concordia frame and a graphical description is used to highlight energetic properties of such a complex system. A control scheme is then deduced from this graphical description. A first open-loop control is achieved on the experimental set-up. The inversion-based control is implemented. Both controls are analyzed in the generalized Concordia frames.

7-PHASE STARTER-ALTERNATOR DESCRIPTION iDC

Concentrated stator windings

VDC

Permanent magnets

12

Ebatt

Rbatt

V+

Excitation coil

i1 34

56

SM

7

T, Ω

vF

iF

V-

7-phase, wye-coupled, claw-pole machine

7-phase starter-alternator description

Experimental set-up picture

INVERSION BASED CONTROL OF THE 7-PHASE DRIVE IN THE GENERALIZED CONCORDIA FRAME, USING ENERGETIC MACROSCOPIC REPRESENTATION (EMR) ⎧v0 = L0 d (i0 ) / dt + RS i0 + e0 :ignored (i0 always null) ⎪ ⎪v S1−d = LS1−d d (iS1−d ) / dt + RS iS1−d + eS1−d ⎪v = LS1−q d (iS1−q ) / dt + RS iS1−q + eS1−q ⎪⎪ S1−q ⎨v S 2−d = LS 2−d d (iS 2−d ) / dt + RS iS 2−d + eS 2−d ⎪v = LS 2−q d (iS 2−q ) / dt + RS iS 2−q + eS 2−q ⎪ S 2−q VDC ⎪v S 3−d = LS 3−d d (iS 3−d ) / dt + RS iS 3−d + eS 3−d ES ⎪ iDC ⎩⎪v S 3−q = LS 3−q d (iS 3−q ) / dt + RS iS 3−q + eS 3−q

VDC ichop

iF eSR-S1

vF

iF

iF

eSR

mchop

iVSI

vVSI imach

A. A Modeling in the Generalized Concordia frame (6 independent dq -axes equations)

iS2

iS2

S2 eS2

iS3

vS3

vVSI ref

iS1ref

vS2ref

iS2ref

vS3ref vFref

S3

eS3

iS3 vS1ref

B. Modeling and inversion-based control in the generalized Concordia frame, using PWM:

S1

eS1

vS2

mVSI

iS1,2,3 eS1,2,3

iS1,2,3

iS1,2,3ref

iS1

vS1 iS1

VDC

vS1,2,3

Excitation circuit modeling

iS3ref

7-phase drive modeling in Concordia subspaces

TS1

Ω TS2

T

Ω

Ω

Ω

TLoad

iS 1,2,3 reference

MS

ecompensation d

iS 1,2,3 d ref

+-

+

ecompensation q

iS 1,2,3 d

K S1,2,3 d

-

1 + τ S1,2,3 d

iS 1,2,3

eq K S1,2,3 q

vS 1,2,3 + -

+ Cq(s) +

iS 1,2,3 q ref + -

TS3

ed

+ Cd(s) +

1 + τ S1,2,3 q

iS 1,2,3 q

Ω T M1 ref

d- and q-currents controllers Cd,q(s), Two 1st order system with compensation of the (d- and q-axes) perturbation e with e as a perturbation

Control structure T ref

T M2 ref T M3 ref

C. Equivalence between EMR and block diagrams for controlling the dq-currents in S1, S2 and S3

iFref

ANALISYS OF TWO CONTROL MODES 150

i1 i2 i3 i4 i5 i6 i7

125 100 75

20

0

18

a

14

-150 0

0.002

0.004

0.006 Time (s)

0.008

200

10

0.01

125

4

0.002

100 75 Magnitude (A)

50

b

-25

0.008

0.01

0.012

-125 0.002

0.004

0.006 Time (s)

0.008

0.012

8 6 4 2 0 0

0.002

0.004

0.006 Time (s)

0.008

0.01

0.012

50 25 0

75 50 25 0

-25

-50

-50

-100 0

-75

-100 0

-100 0

0.004

0.006 Time (s)

0.008

0.01

0.012

iS1d iS1q

125 100

75 25 0

0.004

0.006 Time (s)

0.008

0.01

0.012

iS2d iS2q

150

100 50

0.002

200 175

125

25 0

25 0

-75

-75

0.012

-100 0

0.012

iS3d iS3q

75

-75 0.01

0.01

50

-25 -50

0.008

0.008

125

-25

0.006 Time (s)

0.006 Time (s)

100

75 50

-50

0.004

0.004

150

-25

0.002

0.002

200 175

-50

b 0.01

150 125

-75 0.002

iS3d iS3q

175

100

75

-25

-100 0

12 10

0

200

-50

150

14

-100

50 25

100

-75

200

16

-75

75

175

18

-50

-150 0

0.006 Time (s)

20

0

Torque (Nm)

- Excitation field current: (a): iF= 2.25A (b): iF= 3A

0.004

i1 i2 i3 i4 i5 i6 i7

125

25

150

-25

2 0 0

iS2d iS2q

175 125

100

150

- Delivered power P= 830W

150

8

200

iS1d iS1q

175

0.012

6

Experimental torque measurement:

- Rotation speed N= 1800rpm

12

Magnitude (A)

-125

Magnitude (A)

-100

Magnitude (A)

16

-75

Magnitude (A)

-50

Magnitude (A)

Operating point:

: experimental currents measurements in the stator frame

Magnitude (A)

- (b): Inversion-based control in the generalized Concordia frame, using PWM

a

25

-25

Torque (Nm)

- (a): Open loop 180° square wave control

Magnitude (A)

Analysis, in alternator mode, of:

50

0.002

0.004

0.006 Time (s)

0.008

0.01

0.012

-100 0

0.002

0.004

Projection of the currents in the generalized Concordia frame

0.006 Time (s)

0.008

0.01

0.012