Architecture and models of the brain eye saccadic movement circuitry

Superior Colliculus. Substrate. Models. 4. Basal Ganglia. Substrate. Models. 5 ..... Ctx. Structure. D1 Str. Disinhibition of channel 2. S. STN. D2 Str. FS. Cortex.
6MB taille 2 téléchargements 433 vues
Intro

SG

SC

BG

Architecture and models of the brain eye saccadic movement circuitry Benoˆıt Girard [email protected] Institut des Syst` emes Intelligents et de Robotique (ISIR)

Ctx

Intro

SG

SC

Plan 1

Introduction Eye Movements Saccades

2

Brainstem Saccade Generators Substrate Models

3

Superior Colliculus Substrate Models

4

Basal Ganglia Substrate Models

5

Cortex Substrate Models

BG

Ctx

Intro

SG

SC

Plan 1

Introduction Eye Movements Saccades

2

Brainstem Saccade Generators Substrate Models

3

Superior Colliculus Substrate Models

4

Basal Ganglia Substrate Models

5

Cortex Substrate Models

BG

Ctx

Intro

SG

SC

BG

Oculomotor Movements Numerous circuits, at all the levels of the CNS. Repertoire of movements / repertoire of (relatively) distinct systems : Stabilization : Vestibulo-ocular reflex (VOR), Opto-kinetic reflex/nystagmus (OKN).

Fovea-specific : Saccades, Smooth pursuit.

Vergence.

Ctx

Intro

SG

SC

Extra-ocular muscles organization

BG

Ctx

Intro

SG

SC

BG

Ctx

Saccades

(Yarbus, 1967)

Intro

SG

SC

BG

Ctx

Neural Substrate SEF LIP FEF

TH

BG SC Retinal Input Extraocular Muscles

Verm SBG

Intro

SG

Neural Substrate

SC

BG

Ctx

Intro

SG

SC

Plan 1

Introduction Eye Movements Saccades

2

Brainstem Saccade Generators Substrate Models

3

Superior Colliculus Substrate Models

4

Basal Ganglia Substrate Models

5

Cortex Substrate Models

BG

Ctx

Intro

SG

SC

BG

Ctx

Neural Substrate MN :

oculomotor (III), trochlear (IV) and abducens (VI) nuclei

EBN , IBN : H : paramedian pontine reticular formation (PPRF), medular reticular formation (Med. RF) V : Rostral interstitial nucleus of medial longitudinal fasciculus (riMLF), nucleus of the posterior commissure (nPC)

TN : RIP

H : nucleus prepositus hypoglossi (NPH), medial vestibular nucleus (MVN), V : nucleus interstitial of Cajal (NIC)

OPN :

nucleus raphe interpositus (nRIP)

Intro

SG

SC

BG

Ctx

Neural Substrate Left

Right

FX

FX

deep superior colliculus

deep superior colliculus

BN BUN

BN BUN

SC Burst Neurons (BN) SC Build−Up Neurons (BUN) SC Fixation Neurons (FX) cMRF

cMRF visuo−motor neurons

cMRF LLBN

dorsal Long−Lead Burst Neurons Neurons (LLBN) Omnipause Neurons (OPN) Long−Lead Burst Neurons (LLBN) Short Lead Excitatory Burst Neurons (EBN) Nucleus Prepositus Tonic Neurons (nph) Abducens Motor/Internuclear Neurons (MN) Inhibitory Burst Neurons (IBN)

OPN

LLBN

LLBN

EBN

R L

EBN

nph

nph

MN

MN

IBN

Eye Position

LLBN

IBN

Intro

SG

SC

BG

Ctx

(Robinson, 1975) Feedback control of the saccade (as pertubed saccades have correct metrics).

Target Position

EBN TN

MN

Problems : Cranio-centric coordinates, Oblique saccades.

Plant

Intro

SG

SC

BG

Ctx

(J¨ urgens et al., 1981) Retino-centric coordinates : resettable integrator RI

Desired Displacement

EBN TN

Trigger

OPN Bias

Where is the RI ?

IBN

MN

Plant

Intro

SG

SC

BG

Ctx

(Scudder, 1988) IFN r

Bias Desired Displacement wrt the right

LLB r

EBNr Bias

TN r

MN r

Plant r

IBNr Bias weak indirect trigger

OPN

Changed order of operations (integration in LLB and substraction) RI changed in IFN Resumed saccades after OPN stimulation Straight oblique saccades Pb with staircase saccades

Intro

SG

SC

BG

Ctx

(Scudder, 1988) IFN r

Bias Desired Displacement wrt the right

LLB r

EBNr Bias

TN r

MN r

Plant r

TN l

MN l

Plant

IBNr Bias weak indirect trigger

OPN

IBNl Bias Desired Displacement wrt the left

LLB l

EBNl Bias

IFN l

Antagonist control

l

Intro

SG

SC

BG

Ctx

(Moschovakis, 1994) Bias Desired Displacement

LLB

EBN TN

RI

Bias OPN

Latch

Upward generator : RI ! Reset specified (OPN), Keeps Scudder’s model good properties.

MN

Plant

Intro

SG

SC

BG

What if the feedback was somwhere else ? Where are the RI ? Are there RI ? The SC could be part of the feedback mechanism (we’ll discuss that soon). The Cerebellum could play a role in the feedback control of saccades ! (Lef`evre et al., 1998)

Ctx

Intro

SG

SC

Plan 1

Introduction Eye Movements Saccades

2

Brainstem Saccade Generators Substrate Models

3

Superior Colliculus Substrate Models

4

Basal Ganglia Substrate Models

5

Cortex Substrate Models

BG

Ctx

Intro

SG

SC

BG

Layers

SEF LIP FEF

TH

BG SC Retinal Input Extraocular Muscles

Verm SBG

Visual neurons (V), Quasi-visual neurons (QV) : memory, Visu-motor neurons (VMB/VMP) Motor neurons (M) Fixation neurons (FIX)

Ctx

Intro

SG

SC

BG

Ctx

Layers

SEF LIP FEF

= Quasi Visual (?)

TH

= Burst Neurons

BG SC Retinal Input Extraocular Muscles

Verm

= Build−Up Neurons

SBG

= Burst Neurons

Visual neurons (V), Quasi-visual neurons (QV) : memory, Visu-motor neurons (VMB/VMP) Motor neurons (M) Fixation neurons (FIX)

F : Arm Movement Neurons (Werner, 1993)

Intro

SG

SC

BG

Ctx

Maps

SEF LIP FEF

TH

BG SC Retinal Input

Verm SBG

Extraocular Muscles

Intro

SG

SC

BG

Ctx

Logarithmic maps Macaque (Robinson, 1972 ; Ottes et al., 1986) 3 90

2 45

Y(mm)

1

0

0

−1 2

−2

−45

5 10 20

−3

0

1

X Y z+A +i = ln( ), with z = ↵ + i BX BY A

2

X(mm)

80 −90

40 3

4

5

Intro

SG

SC

BG

Linear maps Mouse (Dr¨ager & Hubel, 1976), Rat (Simino↵ et al., 1966)

↵ = X /bX and

= Y /bY

Ctx

Intro

SG

SC

BG

Ctx

Spatio-temporal transformation : the problem Saccade encoded as : Superior Colliculus Motor Map (BN and BUN)

de plitu Am 10°

40°

20°

SC map : a (stereotyped) bump of activity on a given location,

90°

N3

45°

N1



N2

−45°

−90°

a

a

EBN t

EBN t

TN

Upward Saccade Generator

TN

MN

Leftward Saccade Generator

MN

Extra−ocular muscles

Polar Angle

5° 2°

SG : two bursts of varying intensities. STT : How to transform one code into another ?

Intro

SG

SC

STT : weighted sum (van Opstal & van Gisbergen, 1987)

SC Map

Rate Code

BG

Ctx

Intro

SG

SC

BG

Ctx

STT : weighted sum (van Opstal & van Gisbergen, 1987)

SC Map

SC Map

SC Map

SC Map SC Map SC Map SC Map

t

Rate Code

Rate Code

Rate Code

Rate Code

t

Intro

SG

SC

BG

SC-in-the-loop

What if the SC was in the feedback loop ?

Ctx

Intro

SG

SC

BG

Ctx

(Droulez and Berthoz, 1991) Up

Up target 1

30°

30°

target 1 ard



w e to cad sac get 1 tar

s

30° Down

“Moving Hills” hypothesis

30°

0° Right

30° Down

target 2

30°

Right

Intro

SG

SC

BG

Ctx

(Waitzman et al., 1991) RI

190sp/s

2α TLLB TLLB TLLB TLLB TLLB

1/α

MLB NI

Collicular Map OPN

MN

Plant

Latch

100sp/s

“Stationary Decreasing Hill” Inspired by correlation results between BN burst decrease and eye trajectory, Very similar to a (J¨ urgens et al., 1981) model.

Intro

SG

SC

BG

SC-NOT-in-the-loop

Well, it’s probably not... (Kato, Grantyn, Dalezios, Moschovakis, THE LOCAL LOOP OF THE SACCADIC SYSTEM CLOSES DOWNSTREAM OF THE SUPERIOR COLLICULUS, Neuroscience, 143 (2006) 319 –337)

Ctx

Intro

SG

SC

STT : normalized weighted sum (Lee, Rohrer & Sparks, 1988)

SC Map

t

Rate Code /

t

BG

Ctx

Intro

SG

SC

BG

Ctx

STT : normalized weighted sum (Lee, Rohrer & Sparks, 1988)

SC Map

SC Map

t

t

Rate Code

Rate Code /

/ average

t

t

SC Map SC Map SC Map SC Map

SC Map

t t

Rate Code

Rate Code /

/

t

t

Intro

SG

SC

STT : normalized weighted sum (Lee, Rohrer & Sparks, 1988)

SC Map

t

Rate Code /

t

SC Map

t

Rate Code / decreased

t

increased

t

BG

Ctx

Intro

SG

SC

BG

STT : summation & saturation (Groh, 2001 ; Goossens & van Opstal, 2006 ; Tabareau et al., 2007)

Summation

SC Map SC Map

t

Ctx

Intro

SG

SC

BG

STT : summation & saturation (Groh, 2001 ; Goossens & van Opstal, 2006 ; Tabareau et al., 2007)

Summation SC Map SC Map SC Map

t

Ctx

Intro

SG

SC

BG

STT : summation & saturation (Groh, 2001 ; Goossens & van Opstal, 2006 ; Tabareau et al., 2007)

Summation SC Map SC Map SC Map SC Map

t

Ctx

Intro

SG

SC

BG

Ctx

STT : summation & saturation (Groh, 2001 ; Goossens & van Opstal, 2006 ; Tabareau et al., 2007)

Summation

Summation

SC Map SC Map SC Map SC Map

SC Map SC Map SC Map SC Map

t

t

average

Summation SC Map SC Map SC Map SC Map

t

decreased

increased

Intro

SG

SC

BG

STT : summation & saturation (Groh, 2001 ; Goossens & van Opstal, 2006 ; Tabareau et al., 2007)

Summation

SC Map SC Map

t

Summation SC Map SC Map SC Map SC Map

t

Ctx

Intro

SG

SC

Plan 1

Introduction Eye Movements Saccades

2

Brainstem Saccade Generators Substrate Models

3

Superior Colliculus Substrate Models

4

Basal Ganglia Substrate Models

5

Cortex Substrate Models

BG

Ctx

Intro

SG

SC

BG

Basal Ganglia - Anatomy

Ctx

TH BG

Motor circuits

Ctx

Intro

SG

SC

BG

Ctx

Basal Ganglia - Anatomy

Ctx

Ctx

TH

D1

Str

D2

STN

BG GPi/SNr

Motor circuits

Motor circuits

subcortical interconnected nuclei, common to vertebrates, involved in cortico-basal loops, but also in subcortical ones (with SC, CBLM, etc.)

GPe

TH

Intro

SG

SC

BG

Ctx

Basal Ganglia - Anatomy Limbic

Associative Sensory

Motor

Ctx Ctx

Ctx

Ctx

Ctx

TH ventral to dorsal striatum

BG

BG

BG

TH

TH

Motor circuits

subcortical interconnected nuclei, common to vertebrates, involved in cortico-basal loops, but also in subcortical ones (with SC, CBLM, etc.)

BG

TH

BG

TH

Intro

SG

SC

BG

Ctx

Basal Ganglia - Anatomy Limbic

Associative Sensory

Motor

Ctx Ctx

Ctx

Ctx

Ctx

TH BG ventral to dorsal striatum

TH

BG

BG

TH

TH

SC

subcortical interconnected nuclei, common to vertebrates, involved in cortico-basal loops, but also in subcortical ones (with SC, CBLM, etc.)

BG

TH

BG

TH

Intro

SG

SC

BG

Basal Ganglia - Physiology

Adapted from (Chevalier & Deniau, 1990)

Ctx

TH BG

Motor circuits

Generic role of selection Selection by Disinhibition, Reinforcement Learning ) Cortico-striatal plasticity, controlled by dopamine

Ctx

Intro

SG

SC

BG

Basal Ganglia - Physiology

Adapted from (Chevalier & Deniau, 1990)

Generic role of selection Selection by Disinhibition, Reinforcement Learning ) Cortico-striatal plasticity, controlled by dopamine

Ctx

Intro

SG

SC

BG

Ctx

Basal Ganglia - Physiology

Ctx

TH BG VTA SNc

Motor circuits

Generic role of selection Selection by Disinhibition, Reinforcement Learning ) Cortico-striatal plasticity, controlled by dopamine

Intro

SG

SC

BG

Ctx

Direct / Indirect Pathways

1

Cortex

0

Direct

Indirect

Striatum

GPe

GPi/SNr

STN

Thalamus

(Albin et al. 1989) (Berns & Sejnowski, 1996) Same o↵-center on-surround mechanism in recent direct/hyperdirect models (Leblois et al., 2006)

1

1

0

0

1 0

Intro

SG

SC

BG

Ctx

Direct / Indirect Pathways

1

Cortex

0

Direct Striatum

Indirect GPe w=1

GPi/SNr

STN

Thalamus

(Albin et al. 1989) (Berns & Sejnowski, 1996) Same o↵-center on-surround mechanism in recent direct/hyperdirect models (Leblois et al., 2006)

1

w=1/N 1

0

0

1 0

Intro

SG

SC

BG

Ctx

Direct / Indirect Pathways

1

Cortex

0

Direct Striatum

Indirect GPe w=1

GPi/SNr

STN w=−1

Thalamus

(Albin et al. 1989) (Berns & Sejnowski, 1996) Same o↵-center on-surround mechanism in recent direct/hyperdirect models (Leblois et al., 2006)

1

w=1/N 1

0

0

1 0

f(

) = f(

)=0

Intro

SG

SC

BG

Ctx

GPR Model (Gurney et al., 2001)

Frontal Cortex

1

Cortex

0

Saliences Selection D1

Control STN

D2

w=1

GPi/SNr

GPe

1

w=1 1

0

0

w=−1 Thalamus

Control inhibition

Output

1 0

f(

) = f(

)=0

Intro

SG

SC

BG

Ctx

GPR Limitations Channel 1

0.7

Channel 2

0.7

Channels 3−6

0.7

0.6

0.6

0.6

0.5

0.5

0.5

0.4

0.4

0.4

0.3

0.3

0.3

* 0.2

0.2

0.1

0.1

0.0

0.0

−0.1

0

1

2

3

4

5

6

Time(s)

7

8

9

−0.1 10 0

0.2 0.1

*

0.0 1

2

3

4

5

6

Time(s)

7

8

9

−0.1 10 0

1

2

3

4

5

6

7

8

9

10

Time(s)

* : Instability. With uniformly drawn inputs : the ⌧ winning channel is more inhibited than the rest level in 30% of the cases.

Intro

SG

SC

BG

Ctx

GPR Limitations Channel 1

0.7

Channel 2

0.7

Channels 3−6

0.7

0.6

0.6

0.6

0.5

0.5

0.5

0.4

0.4

0.4

0.3

0.3

0.3

* 0.2

0.2

0.1

0.1

0.0

0.0

−0.1

0

1

2

3

4

5

6

Time(s)

7

8

9

−0.1 10 0

0.2 0.1

*

0.0 1

2

3

4

5

6

Time(s)

7

8

9

−0.1 10 0

1

2

3

4

5

6

7

8

9

10

Time(s)

* : Instability. With uniformly drawn inputs : the ⌧ winning channel is more inhibited than the rest level in 30% of the cases.

Intro

SG

SC

BG

Ctx

Contracting Basal Ganglia (CBG) Model (Girard et al., 2008) Basal Ganglia Cortex

D2 Str

GPe S Thalamus

FS

FC

D1 Str

TRN STN

Includes previously ignored connexions. Amplificatory thalamo-cortical loop. Selective amplification in the frontal cortex, strict selection of the subcortical targets. Numerous internal loops : stability ?

GPi/SNr

Disinhibition of channel 2

TH

Intro

SG

SC

BG

Ctx

Structure Basal Ganglia

Basal Ganglia Cortex

D2 Str

D2 Str

GPe

GPe

S Thalamus

S Thalamus

FS

FC

TH

D1 Str

TRN STN

GPi/SNr

Disinhibition of channel 2

TH

FS

FC

D1 Str

TRN STN

O↵-center on-surround circuits, Negative Feedback to amplify contrast, Contraction conditions analytically defined (BG and TC), Numerical checking of the contraction of the whole.

GPi/SNr

Disinhibition of channel 2

Cortex

Intro

SG

SC

BG

Structure Basal Ganglia Cortex

D2 Str

GPe S Thalamus

FS

FC

D1 Str

TRN STN

GPi/SNr

Disinhibition of channel 2

TH

O↵-center on-surround circuits, Negative Feedback to amplify contrast, Contraction conditions analytically defined (BG and TC), Numerical checking of the contraction of the whole.

Ctx

Intro

SG

SC

BG

Ctx

Contraction

BG module : 2

Basal Ganglia Cortex

GPe D1 ((1 + )wD1 wGPe ) + ((1

D2 Str

2

GPe D2 )wD2 wGPe )