

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Answers to quiz #1 on Algebraic Specification - Christian Rinderknecht

Answers to quiz #1 on Algebraic Specification. Christian Rinderknecht. 17 May 2005. 1 Arrays. We want an algebraic specification of arrays. An array is a list ...

 Télécharger le PDF

 32KB taille
 4 téléchargements
 433 vues

 commentaire

 Report

Answers to quiz #1 on Algebraic Specification Christian Rinderknecht 17 May 2005

1

Arrays

We want an algebraic specification of arrays. An array is a list whose size is fixed at the construction time and whose elements are items of the same type. There is a special item which is used as a default element when creating a new array (i.e., a freshly created array contains these default elements). Then the user can change an element to another value by specifying the integer index (i.e., position) in the array and the new value. Let us call Item the specification of some items whose signature is as follows. • Defined types The type of the items is noted t • Constructors Default : t The term Default is a distinguished item, whose interpretation is left to the user of this specification. Let us call now Array(Item) the specification of the arrays over items of type Item.t. The signature is as follows. • Defined types The type of the arrays is noted t. • Constructors – Empty : t The term Empty represents the array which contains no element. – Create : int × int → t The term Create(x, y) denotes an array whose elements are indexed from x to y, if x < y, or from y to x otherwise. The type int denotes the set of positive integers. Integers x and y are called bounds. If x < y then x is the lower bound and y is the upper bound. For example, Create(3, 5) is an array whose elements are indexed by integers 3, 4 and 5. It contains three elements. These elements are all equal to Item.Default. Also Create(5, 3) is 1

the same as Create(3, 5). Therefore, in both cases, the lower bound is 3 and the upper bound is 5. – Set : t × int × Item.t → t The term Set(a, n, e) represents an array equal to array a except that the element at index n is e. If n is out of bounds, i.e., if n is not between the bounds of a, the result of Set is unspecified. Same if a is empty. • Functions – Lower : t → int The call Lower(a) is the lower bound of array a, i.e., the smallest valid index. If a is empty, the result is unspecified. – Upper : t → int The call Upper(a) is the upper bound of array a, i.e., the greatest valid index. If a is empty, the result is unspecified. – Get : t × int → Item.t The call Get(a, n) denotes the element in array a at index n. If n is out of bounds or if a is empty, the result of Get is unspecified. Question. Complete this signature with equations defining functions Lower, Upper and Get. Answers. • Lower : t → int First, we know that we have to left unspecified the case when the array is empty, i.e. there is no equation whose side is Lower(Empty). We still have to consider the two other constructors, Create and Set: Lower(Create(x, y)) = ?

(1)

Lower(Set(a, n, e)) = ?

(2)

In case of equation 1, we must distinguish two cases: if x < y or x ⩾ y: Lower(Create(x, y)) = ?

if x < y

Lower(Create(x, y)) = ?

if x ⩾ y

Lower(Set(a, n, e)) = ? These cases are easy to complete because we know explicitly the lower bound: Lower(Create(x, y)) = x

if x < y

Lower(Create(x, y)) = y

if x ⩾ y

Lower(Set(a, n, e)) = ? 2

The last case (equation 2) is also easy to solve because the argument is simply the array a with one element modified: the call to Set does not change the lower bound. Therefore: Lower(Create(x, y)) = x

if x < y

Lower(Create(x, y)) = y

if x ⩾ y

Lower(Set(a, n, e)) = Lower(a) • Upper : t → int This case is the dual of Lower: Upper(Create(x, y)) = y

if x < y

(3)

Upper(Create(x, y)) = x

if x ⩾ y

(4)

Upper(Set(a, n, e)) = Upper(a)

(5)

• Get : t × int → Item.t First, we know that the case of the empty array is not specified for Get (there is no element to get), so there is no equation whose side is Get(Empty, n). The remaining constructors Create and Set have to be considered: Get(Create(x, y), n) = ?

(6)

Get(Set(a, p, e), n) = ?

(7)

We know from the signature that if the index n is out of bounds, the value of the call to Get is unspecified. This means that equation 6 should be restricted to the case Lower(Create(x, y)) ⩽ n ⩽ Upper(Create(x, y)) which can be split into two cases, depending on x and y: Get(Create(x, y), n) = ?

if x ⩽ n ⩽ y

Get(Create(x, y), n) = ?

if y ⩽ n ⩽ x

Get(Set(a, p, e), n) = ? We have to restrict also equation 7 to the case Lower(Set(a, p, e)) ⩽ n ⩽ Upper(Set(a, p, e)) which, using the equations 2 and 5 of Lower and Upper, is equivalent to Lower(a) ⩽ n ⩽ Upper(a). Therefore we have: Get(Create(x, y), n) = ?

if x ⩽ n ⩽ y

Get(Create(x, y), n) = ?

if y ⩽ n ⩽ x

Get(Set(a, p, e), n) = ?

if Lower(a) ⩽ n ⩽ Upper(a) 3

Also p must be in-between bounds: Lower(a) ⩽ p ⩽ Upper(a). So: Get(Create(x, y), n) = ?

if x ⩽ n ⩽ y

Get(Create(x, y), n) = ?

if y ⩽ n ⩽ x

Get(Set(a, p, e), n) = ?

if Lower(a) ⩽ p, n ⩽ Upper(a)

The signature tells us that a newly created array is filled with the special element Item.Default. So if we pick any element between the bounds, it is always equal to Item.Default: Get(Create(x, y), n) = Default

if x ⩽ n ⩽ y

Get(Create(x, y), n) = Default

if y ⩽ n ⩽ x if Lower(a) ⩽ p, n ⩽ Upper(a)

Get(Set(a, p, e), n) = ?

The last equation has to be split in two cases, because we can express diﬀerently the result if p = n or not: Get(Create(x, y), n) = Default

if x ⩽ n ⩽ y

Get(Create(x, y), n) = Default

if y ⩽ n ⩽ x

Get(Set(a, n, e), n) = ?

if Lower(a) ⩽ n ⩽ Upper(a)

Get(Set(a, p, e), n) = ?

if p ̸= n and Lower(a) ⩽ p, n ⩽ Upper(a)

If p = n the result is e because, by construction, it is the element at position n in Set(a, n, e). It p ̸= n, the result cannot be e, by construction. Hence we must look for it in a. As a conclusion: Get(Create(x, y), n) = Default

if x ⩽ n ⩽ y

Get(Create(x, y), n) = Default

if y ⩽ n ⩽ x if Lower(a) ⩽ n ⩽ Upper(a)

Get(Set(a, n, e), n) = e Get(Set(a, p, e), n) = Get(a, n)

if p ̸= n and Lower(a) ⩽ p ⩽ Upper(a)

Notice we removed the condition Lower(a) ⩽ n ⩽ Upper(a) from the last equation. This is a simplication, because, in this case, we can delay the condition check on n to the recursive call Get(a, n). Then, if a is an unmodified array (Create), n will be checked against the bounds (see the first two equations). Otherwise, n may equal an index in bounds (third equation), which settles the problem too.

4

des documents recommandant

[image: alt]

Answers to the final exam on Algebraic Specification - Christian

Answers to the final exam on Algebraic. Specification. Christian Rinderknecht. 17 June 2005. 1 Binary tree specification. Let us recall an algebraic specification ...

[image: alt]

Algebraic Specifications - Christian Rinderknecht

Oct 19, 2008 - arguments of function Or, whose type, as given by the signature, is tÃ—t â†’ t. It is very ... In mathematics, the integer sequence we give page 11.

[image: alt]

Answers to the quiz #4 in Computer Networks - Christian Rinderknecht

Apr 18, 2008 - Answer the following questions, briefly jus- tifying your answer. (a) Would a packet-switched network or a circuit-switched network be more ...

[image: alt]

Quiz #1 of Erlang - Christian Rinderknecht

Quiz #1 of Erlang. Christian Rinderknecht. 3 April 2007. This time it is about shuffling ... Questions. Define shuffle3/3. 1. without tail recursion;. 2. with tail recursion.

[image: alt]

Answers to the final exam on Prolog - Christian Rinderknecht

... does not contain X. Since the heads of rules 2 and 4 match a non empty S, X must only match [] in the new rule 5, which can then be further simplified as ...

[image: alt]

Answers to the mid-term exam on Prolog - Christian Rinderknecht

Answers to the mid-term exam on Prolog. Christian Rinderknecht. 19 October 2006. 1 Matching. Question. Show the results (Yes/No) and resulting variable ...

[image: alt]

Homework on Lex - Christian Rinderknecht

Oct 25, 2005 - Write an integer postfix calculator in Lex. For example, expressions such as 1 2 + and 1 2 3 4 /*- should be evalu- ated respectively to 3, i.e. 1+2 ...

[image: alt]

Answers to the quiz on Compilers

Answers to the quiz on Compilers. Christian Rinderknecht. 29 November 2005. Question. Consider the following Lex regular expression and propose a transi-.

[image: alt]

Answers to the final examination of Erlang - Christian Rinderknecht

Answers to the final examination of Erlang. Christian Rinderknecht. 14 June 2007. 1 Merging sorted lists. Question. Write a function merge/2 which takes two lists ...

[image: alt]

Final examination on Introduction to the Internet - Christian Rinderknecht

What are the five layers in the Internet protocol stack? What are the principal responsibilities of each of these layers? 2. What information is used by a process ...

[image: alt]

Unparsed Patterns - Christian Rinderknecht

This extended version contains an extra Appendix with the proof of the claimed properties. P ARx, specific to each algorithm, that may add or not some meta-.

[image: alt]

Information Retrieval - Christian Rinderknecht

Oct 31, 2008 - Property x Â· Ç« = Ç« Â· x = x holds for all strings x. the same pair of nodes and listing the labels, separated by commas: q0 q1 q2. 0. 1. 0. 1. 0,1.

[image: alt]

corporate readers - Christian Rinderknecht

Compiler Engineer and Expert in Formal Methods ... Compiler Construction and Related Toolchains ... Technical Documentation and Scholarly Publications.

[image: alt]

Academic - Christian Rinderknecht .fr

Software R&D Engineer and expert in formal methods. Dr Christian Rinderknecht ... +46 (0)72.226.00.06 ... XSLT); programming (Erlang, OCaml, Prolog, C, C++, Pascal, Java); algeb- applications aux services R.I. In Actes de la troisiÃ¨me Ã©dition

[image: alt]

Computer Networks - Christian Rinderknecht

Oct 24, 2008 - Suppose a client uses a non-persistent connection to query a page made of a base html file and ten jpeg images, all objects being stored on ...

[image: alt]

Compiler Construction - Christian Rinderknecht

characters having a collective meaning; sets of lexemes with a common interpretation ... Rule 1 and 2 are non-recursive base rules, while the others define expres- sions in terms of ... An abstract syntax tree (or just syntax tree) is a compressed ve

[image: alt]

CPRAEDCOURSE QUIZ ANSWERS PDF

Volume In Honor Of Samuel H Osipow Contemporary T, Corporate Resolutions ... online or by storing it on your computer, you have convenient answers with ...

[image: alt]

Logic Circuit Design - Christian Rinderknecht

Oct 31, 2008 - The fractional part of a decimal number is of the shape: F = d-1 Ã— 10-1 + d-2 Ã— 10-2 64 + 32 + 16 + 4 + 1 = 117. 2-complement binary Consider a boolean function F(A, B), defined by the truth table. A B AB AB AB AB F(A, ...

[image: alt]

XML and XSLT - Christian Rinderknecht

Oct 31, 2008 - wise #IMPLIED,. 6. a closing tag > saxonhe9-3-0-4j.zip/download. Its name is Otherwise it will be output without namespace, instead of ...

[image: alt]

Answers to the Final Exam on Prolog Programming - Christian

Answers to the Final Exam on. Prolog Programming. Christian Rinderknecht. 3 December 2008. 1 Sorting leaves in a binary tree. Question. Design a simple ...

[image: alt]

Answers to the exercise #3 on Computer Networks - Christian

a user's card and password to be verified, the account balance (which is main- tained at the bank) to be queried, and an account withdrawal to be made. (money ...

[image: alt]

XML and XSLT - Christian Rinderknecht

easier to start with a small example. Consider an e-mail. What are the A complete example: Second. .

[image: alt]

Interlude Culturel Quiz Answers

Get free access to PDF Interlude Culturel Quiz Answers at our Ebook Library. PDF File: Interlude Culturel Quiz Answers. 1/1. INTERLUDE CULTUREL QUIZ ...

[image: alt]

An Algorithm for Validating ASN.1 (X.680 ... - Christian Rinderknecht

propose to fully validate the X.680 specifications, i.e., the main part of ASN.1, by ... defined the Abstract Syntax Notation One (ASN.1) [1â€“4] series of stand- ards. ASN.1 is a Ï† ((Ï€0,Ï€1),f,g) â‰œ {e Ë™Ðži | e0 Ë™Ðži0 âˆˆ Ï€0,e1 Ë™Ðži1 â

×
Report Answers to quiz #1 on Algebraic Specification - Christian Rinderknecht

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

