András Gregor, Richard Meade, Pavel Svaton with Arnold ... .fr

... with Arnold Salas. Toulouse School of Economics, 11 March 2010 ... Working through the model – four propositions (Pavel). Empirical ..... useful benchmark to.
1MB taille 41 téléchargements 64 vues
András Gregor, Richard Meade, Pavel Svaton with Arnold Salas Toulouse School of Economics, 11 March 2010

Outline y Introduction (Richard) y Context y Motivating examples y The paper’s “Big Idea” and Key Conclusions y Key terms, assumptions and tools y Working through the model – four propositions (Pavel) y Empirical analysis (Andrís) y Discussion (Richard)

Context – Explaining Volatility in  GDP Growth Aggregate  shocks

• Policy/monetary shocks, inflation, wars, etc 

Sectoral shocks

• Shocks affecting specific sectors • Potentially big enough to drive GDP • Represent a weak form of Gabaix’s hypothesis

Firm‐level  shocks

• Gabaix is here – arguing that firm‐level shocks  can affect GDP fluctuations if the firm‐size  distribution has “fat tails”

Motivating Examples y Gabaix mentions companies whose idiosyncratic shocks can 

move GDP growth materially:

y Microsoft one‐off dividend in 2004 boosting personal income 

growth y Nokia accounting for 1.6% points of Finland’s GDP growth y Strike at GM, innovations by Wal‐Mart, …

y Easy to think of other examples of companies influencing GDP: y Oil companies – Russia (Gazprom 8% of GDP), Hungary, Nigeria,  Venezuela, … y Car manufacturers – Italy (Fiat 8.5% of GDP) y New Zealand:  y y

Largest company is dairy cooperative, Fonterra (8% of GDP and 25% of  exports) Largest listed company is Telecom (≈20% of main stock index)

On the significance of large  firms in the US

Æ Sales of top 100 non-oil Compustat firms in US account for 25-30% of GDP

“Big Idea” and Key Conclusions Idiosyncratic shock

Large Firm

Small agg.  shocks

Granular hypothesis: Large part of aggregate fluctuations is due to  idiosyncratic shocks to individual (large) firms: ÆComplements other explanations ÆLarge firms are “incompressible grains” ÆDemystifies the Solow residual?

GDP

Other  Firms (GE)

“Big Idea” (cont’d) y Where does this idea come from (aside from appearing 

obvious at first glance, especially to those outside the US)?

y First need to knock down the “straw man”: 1/√N 

diversification – i.e. the common argument that aggregate  volatility σGDP declines at rate 1/√N as the number N of  firms rises, so firm‐level shocks wash out in the aggregate if  N is large enough

y Gabaix argues and cites evidence that firm‐size distribution 

is fat‐tailed, following a “power law distribution”, and hence  σGDP declines slower than 1/√N as N rises Æ firm‐level  idiosyncratic shocks don’t just diversify away

Key Findings y Gabaix’s measure of large‐firm idiosyncratic 

productivity shocks (“Granular Residual”) explains  about ⅓ of GDP growth and the Solow Residual y Idiosyncratic shocks do not die out in the aggregate, 

and are large enough to explain GDP fluctuations  (more so for non‐US countries which are often less  diversified)

Key Terms, Assumptions, Tools y Solow Residual, or Total Factor Productivity (TFP) – the part of 

output growth that cannot be explained by increases in inputs  (i.e. the empirically important bit) y Granular residual – large‐firm idiosyncratic firm‐level 

productivity shock left over after relating labour productivity to  total factor productivity and decomposing it into common,  industry, and firm‐specific parts Æ see definitions later y Gibrat’s Law of Variances – the standard deviation of a firm’s 

percentage growth rate is independent of the firm’s size: y Helps to make his arguments, but turns out to not be essential y Implies firm‐level shocks “scale up” rather than diversify

Key Terms, etc (cont’d) y Power law distribution – e.g. P(S>x) = ax‐ζ y Commonly understood in terms of the “80/20 rule” – 80% of 

effects are due to 20% of causes 

y More often known in the particular guise of Zipf’s law: y Special case with ζ= 1 Æ fat tails, no moments, no CLT y States that frequency is inversely proportional to rank y Often arises in economics – size of firms and cities, stock returns …  y Sufficient to establish Gabaix’s propositions, but not necessary (see  Sales Herfindahl below) y Zeta (ζ) is our “Cinderella parameter” – generates Gabaix’s stories 

so long as 1 ≤ ζ x ) = a( x ) 2

1/ 2

−ζ / 2

= ax

y Application of  Lévy’s Theoreom: The sum does not scale as √N 

as it does in the CLT, but it scales as N1/ζ since the size of largest  units scales as N1/ζ

Proof of Prop. 2 (cont’d) y So we have: N

N − 2 / ζ ∑ Si2 → u i =1

where u is a Lévy distributed random variable with exponent ζ/2. • Since we have  N1‐/ζ = N‐2/ζ/N‐1  we obtain:

N

1−1 / ζ

⎛ ⎜N h = ⎝

−2 /ζ

N

N



−1

i =1 N



i =1

S

2 i

Si

⎞ ⎟ ⎠

1/2



d

u 1/2 E[S ]

Interpretation of Prop. 2

u 1/2 y Setting                to  vζ and rearranging we  arrive at: E[S ]

vζ σGDP ~ 1−1/ζ σ QED. N y Economic Interpretation

If the firm size distribution has fat tails (ζ  x) = x−ζ for ζ ‫[ א‬1, ∞). Assume that the  volatility of a firm of size S is firm −α (12)

σ

( S ) = kS

for some α > 0 (then large firms have a smaller standard  deviation that small firms).

⎛ −1 ⎞ α Define:                                                                                          (13) ⎟⎟ α = min⎜⎜1 / 2,1 + ζ ⎠ ⎝ '

Prop. 3 (cont’d) y GDP fluctuations have the form:

ΔYt −α ' = kN g t Yt

1

if ζ > 

(14)

if ζ =

1                                 (15)

−α '

ΔYt N =k gt Yt ln N

such that when N → ∞, gt converges to a non‐degenerate  distribution. When   ζ > 1, gt converges to a Lévy stable  distribution with exponent min {ζ/ (1 − α) , 2}. In particular, the volatility σ (S) of GDP growth decreases as a

power law function of GDP S:

σ

GDP

(S ) ~ S

−α '

(16)

Economic Interpretation y Under the case presented by Proposition 3, and ζ = 1, large 

firms are less volatile than small firms (equation 12).  y The top firms in big countries are larger (in an absolute 

sense) than top firms in small countries.  y As the top firms determine a country’s volatility, big 

countries have less volatile GDP than small countries  (equation 16).

A Model with Comovement y Up to now: idiosyncratic shocks might explain a significant 

portion of aggregate fluctuations y This model: see whether idiosyncratic shocks create plausibly  strong comovements between the various firms or sectors of the  economy y After a shock to firm i, all the other firms adjust instantaneously,  instead of over time through the input‐output matrix with a lag  via the general equilibrium  y Derivation: o solving the social planner’s problem of maximizing utility (separable in 

consumption (=output) and labor supply o subject to capital and labor constraints, and assuming prices equal  marginal costs.

A Model with Comovement (cont’d) y This gives us expressions for: o aggregate output,  o TFP and sales,  o used to study the aggregate‐level effects of firm‐level 

proportionate productivity shocks (i.e.  variables are proportional  changes) Æ leads us to Prop. 4 

Proposition 4 y Suppose that each firm i receives a productivity shock Âi.

Macroeconomic variables change according to:

TFP:



∧ Si ∧ i A Λ = ∑ Ai =∑ Sales i GDP Y

(24)

∧ 1 Λ GDP: Y = (1 − αξ ) ∧

(25)

Firm level variables  change according to: ∧







S i = X i = β Ai + (1 − βb(1 − αξ )) Y 28) Dollar Sales:                                                                                   (

β = 1 /(ψ − bαλ − 1 + b) where:                                                                                                (33)

Economic Interpretation y TFP is entirely the sum of idiosyncratic firm‐level shocks. y The economy behaves like a 1‐factor model, with an “aggregate 

shock”, the GDP shock Ŷ – this shock stems from a multitude of  idiosyncratic shocks y Aggregate shock causes all firm level quantities to “comove”. y Economically, when firm i has a positive shock, it makes the 

aggregate economy more productive, and affect the other firms in  three different ways.  y First, other firms can use more intermediary inputs produced by 

firm i, hence increasing their production.  y Second, firm i demands more inputs from the other firms 

(equation 28), which leads their production to increase. 

Economic Interpretation (cont’d) y Third, given firm i commands a large share of output, it will use 

more of the inputs of the economy, which tends to reduce the  other firms’ output (25) The net effect depends on the  magnitudes of the elasticities. y Proposition 4 have a positive loading on the GDP factor bY , i.e. 

they all comove positively with GDP.‐ useful benchmark to  understand comovement  of the business cycle.

Empirical Analysis y A preview of the remaining part of the section: y What and how do we measure? y The models behind the growth rate y „Granular residual” y Regression results y Concentration and firm level volatility y Data: y U.S.Compustat 1951-2001 y K=100 largest firms (except energy and oil)

Gabaix’s (or Blanchard’s) story y Imagine an economy such as: y 1 big firm – 50% output and 100 small firms – 50% output y Growth rate is given (at is common shock):

g

it

= at + ε

it

y A given year: big firms’ growth 6%, small firms’s

growth 0%, so in the economy:+3% GDP y Standard answer: aggregate shock of 3% (big firm 3%, small firms -3% idiosyncratic shocks) y Gabaix shows another explaination

What and how do we measure? y Labour productivity of the firm

sales of firm i in year t zit = ln number of employees of firm i in year t y Productivity growth rate:

g it = zit − zit −1 y Now we look for models which explain the values

Models behind growth rate y 2 way of decomposition: y 1st (where f - factor proportional to GDP growth , AitTFP of firm i):

git = ft + γ Ait y 2nd (where at – shock to all firms, aIi industry specific

shock, eit – idiosyncratic shock)

g it = at + aIi ( t ) + ε it y Thanks to these: link between Ait and at, aIi and ε it

„Granular residual” y Gabaix defines 2 „Granular residuals” to measure firms’

effect on Ait (TFP) – the 2 are highly correlated y 1st (without control for industry): K

Γt =

∑ S a les

i ,t −1

i =1

( g it − g t )

K

∑ S a les i =1

i ,t −1

y 2nd (with control for industry): K

Γ ind = t

∑ Sales

i ,t −1

i =1

( g it − g Ii ( t ) )

K

∑ Sales i =1

i ,t −1

Back to Gabaix’s story y Standard model

g it = a t + ε it y

(See slide Gabaix’s (or Blanchard’s) story)

y According to Gabaix’s model: y y y

Aggregate shock 0% (standard answer 3%) 6% of idiosyncratic shock to big firm (standard answer 3%) Granular residual = 3% y

This is the effect of the big firm’s 6% growth on the GDP

Regression results (only granular residuals) y Table 1 (granular residual) y Even lagged granular residual is used (imitation of technology for instance) y Table 2 (granular residual controlled for industry) y Conclusion: the granular residual explains 1/3 of

aggregate shocks y Robustness? Yes, it’s controlled for: y Monetary shocks y Oil shocks (see Table 3 and 4 in appendix)

Table 1 (granular residual)

ε it

Conclusion: Granular residual explains GDP growth

Table 2 (granular residual controlled for industry)

Conclusion: Granular residual STILL explains GDP growth

Results in a graph

Conclusion: Different Granular residuals explain GDP growth

Stories from USA History

‘82 Volcker recession (outlier)

‘55 Car industry

’72 Steel strike ‘54 End of  Korean War (outlier)

Concentration and firm-level volatility (similar thing, in a different way) y Is large firms’ volatility even big enough to explain

business cycles? (empirical question) Yes, it is. y Caculates standard deviation: y Growth of Sales/Employees ratio, Sales and Employees (12% in general) y What is the good measure of firm size? (theoretical question) y Herfindahl index is an appropriate measure (Hulton’s theorem – no need of complicated calculations) y

y Large firms volatility =>TFP volatility

Table 5 – Actual effect of idiosyncratic firm level shocks

σ GDP = ησ firm −level hS

Conclusion: 1,4% of US GDP volatility is caused by the 12% firm level volatility.

Discussion y Gabaix acknowledges existing literature proposing micro foundations for 

aggregate volatility, but argues they are both conceptually and practically less  useful than his “tractable” approach which is based on observables

y He notes existing work on the role of sectoral shocks in explaining aggregate 

fluctuations, and debate about their relative importance empirically

y For future research on the origin of fluctuations, he suggests: y Look at shocks to big firms, not just aggregate shocks y Apply VAR and impulse response methodologies to firm‐level shocks y Think about how large‐firm shocks affect industry dynamics y Be careful about using aggregates – better information comes from firm‐level y Explaining volatility in other macro variables (inventories, etc) at firm‐level y Gabaix’s ambition seems to be to displace the Solow Residual with the Granular 

Residual, but he acknowledges that his evidence is only preliminary

Appendix: Prop. 4 

Appendix Prop. 4 

Appendix -Table 3

Appendix - Table 4