

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

An Architecture Description Language for Dynamic Sensor-Based

sensor-based applications using a declarative language called. WADL. Dynamic ... temperatures, smoke density in a lobby, blood glucose levels, etc.

 Télécharger le PDF

 317KB taille
 4 téléchargements
 324 vues

 commentaire

 Report

An Architecture Description Language for Dynamic Sensor-Based Applications Humberto Cervantes

Didier Donsez, Lionel Touseau

Universidad Autonoma Metropolitana-Iztapalapa (UAM-I) Iztapalapa. D.F., Mexico

University of Grenoble-1 LIG Laboratory, ADELE team Grenoble, France ,

Abstract—This paper presents an approach to describe dynamic sensor-based applications using a declarative language called WADL. Dynamic sensor-based applications are characterized by the fact that measurement producers (sensors) and consumers are introduced or removed from an execution environment at run-time. Supporting this degree of dynamism is usually done programmatically, and the WADL intends to simplify this task and to provide developers with an explicit view of the system architecture, while supporting its dynamic evolution. The paper describes the WADL, its implementation on top of the OSGi WireAdmin Service, and some experimentation results. Keywords-architectural description language, dynamic sensorbased applications, OSGi

I. INTRODUCTION The next wave of e-business will probably rely on the “Internet of Things” where data generated by many diverse devices will be collected by using a variety of sensors [1]. Sensor-based applications (SBAs) seek to acquire, collect, filter, aggregate, analyze and react to measurements gathered through a network of physical sensors that are spread in the physical world. This information should be integrated into different applications to support activities such as automation control (SCADA) or decision support (data analysis and monitoring). New business opportunities and models (pay-peruse, pay-as-you drive, etc) can be created from the online and offline exploitation of the information on the physical world. Examples of measurements that are obtained through sensors include RFID identifiers, GPS vehicle positions, room temperatures, smoke density in a lobby, blood glucose levels, etc. Sensor-based applications can be nicely designed by using mainly the Producer-Consumer communication pattern [2] where sensors produce measurements and, data processing modules consume produced data. Connecting producers and consumers is a frequent activity in SBA. This pattern differs from the publish-subscribe communication pattern since it combines push and pull interactions. The producers push the data to the consumers when new data is acquired, however consumers can force the production of a new value or retrieve the previous value. Moreover, various levels of quality of service can characterize a connection between a producer and a

consumer. For instance, the dataflow control can limit the push until acquired data becomes significantly different. Dynamic sensor-based applications are characterized by the fact that measurement producers and measurement consumers are introduced or removed from the application at run-time. For instance, a newly-installed smoke detector should be taken into account by a fire monitoring system without the need to restart it. Although there exist different middleware platforms and component models that can be used in the construction of sensor-based applications, they do not usually support the dynamic aspect in an explicit way, as dynamism usually has to be supported programmatically. Managing dynamism, which can be considered a non-functional requirement, through code is generally a complex task. Furthermore, this approach results in a mix of functional and non-functional code and it makes the architecture of the application difficult to understand and to modify as connection logic is buried inside the code. This paper proposes an approach to describe dynamic sensor-based applications through the use of a declarative language called Wired Application Description Language (WADL). This language describes collections of connectors that bind measurement producers and measurement consumers. To support dynamism, a WADL descriptor is capable of expressing variable sets of connectors that can be created and destroyed dynamically. These descriptors are further used by an interpreter which is responsible for managing the connectors between measurement producers and consumers as they are introduced or removed dynamically from the execution environment. The remainder of the paper is structured as follows. Section 2 introduces dynamic sensor-based applications, Section 3 describes the WADL characteristics, Section 4 presents an implementation of the execution environment based on the OSGi framework and its validation. Section 5 discusses related work and finally Section 6 exposes future work and concludes this paper. II.

DYNAMIC SENSOR BASED APPLICATIONS

This section describes the concepts and issues associated to the introduction of dynamism in sensor-based applications.

1-4244-1457-1/08/$25.00 © IEEE This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

A. Dynamism in sensor based applications Dynamic sensor-based applications are characterized by the fact that measurement producers and measurement consumers need to be introduced or removed from the application at runtime. Dynamism is highly desirable in a majority of sensorbased applications. Certain environments, such as medical monitoring systems, impose this type of constraint, as it is not possible to turn off the monitoring application in order to modify the sensor network topology or to add or remove data processing modules. In large scale sensor networks, such as the ones present in residential or office building automation [3,4], the addition or the replacement of sensors such as thermometers or smoke detectors by human operators must be done automatically without stopping the building's monitoring systems. In a similar way, dynamic changes in the quality of service offered by sensors could impact the topology of the application. Moreover, the configuration of a complex and dynamic topology is a real burden for human administrators. Automating this task can help reduce costs. Fig. 1 presents a portfolio of sensor-based applications commonly used in building automation. For instance, adding a presence detector or replacing a faulty one requires both the lighting control application topology and the burglar central application to be modified since they share concurrently those sensors. These operations are error-prone since the maintenance operator may not be the administrator of both applications. B. Modeling sensor-based applications using a serviceoriented approach Traditional software architectures are usually modeled statically through the description of sets of components and connectors that bind the components using Architecture Description Languages (ADLs) [5]. Dynamic software architectures introduce a particular challenge, because they must support changes at the architectural level during execution. These changes may include the creation or removal of component instances, and connections between these instances at run-time. Room 100

Ac tuators

air cond.

Room 199

air cond.

lighting

smoke detector

presence detector

HVAC c entral

lighting central

ind o o r the rmo me te r

smoke detector

lighting

presence detector

ind o o r the rmo me te r

o utd o o r the rmo me te r

Sens ors

Control loops

HVAC c entral burglar c entral

fire c entral

l ighting c entral

Notation Data flow Action

Figure 1. Sensor-based applications in residential or building automation

Furthermore some applications with dynamic architectures have additional requirements with respect to the introduction or removal of components at runtime. For instance, components may not be available at the time the original application is composed. Supporting these requirements can be achieved by incorporating a discovery mechanism in the environment. In service-oriented architectures (SOA) [6,7], this discovery

mechanism is usually some type of registry where components publish the services they provide. Clients can later query the registry or receive notifications about services that are published or removed from the registry at runtime. Once a client discovers a particular service, it can bind directly to the service provider and, in this way, the application architecture evolves continuously as new components are incorporated or removed from the execution environment. Moreover, with a SOA approach every component can be substituted by another one as long as they comply with the same contract (typically defined through an interface). If applied to sensor-based applications this substitution mechanism strengthens the availability and robustness of components representing physical measurement producers. The OSGi specification [8] proposes facilities to manage connections between data producers and consumers through its WireAdmin service using a SOA approach. Producers and consumers are modeled as uniquely identified OSGi services (i.e. they are published in a service registry along with a set of properties). They are delivered in deployment units called bundles. At runtime the connectors, namely wires, are managed by the WireAdmin Service. This service allows wires to be created, deleted, retrieved and updated programmatically. Once connected, producers can either push data into consumers or provide data when they are polled through the wires. Wires are persistent entities that bind specific producers and consumers through unique identifiers. C. WireAdmin service limitations Although the WireAdmin mechanism supports the construction of dynamic sensor-based applications, it has several limitations. The first one is that wires are inextricably tied to specific consumers and producers via persistent and unique identifiers. The second one is that modifications of the topology must be realized programmatically. As a result, there is no explicit representation of the architecture, for it is hidden inside the code responsible for creating or destroying the wires. Furthermore, the life-cycle (i.e. activation and passivation) of a SBA depends generally on the presence or on the absence of mandatory producers or consumers. For instance, a HVAC central (see Fig. 1) may be stopped if no more thermometers are available. The code that manages the application life-cycle is also mixed with the code creating and destroying the wires. As a consequence, evolution and maintenance of such wired applications is complex and error-prone. III.

WADL CHARACTERISTICS

The declarative description language for dynamic-sensor based applications (WADL) is based on three main requirements. First, it must allow producers and consumers to be introduced and removed at run-time. Second, it must support the binding of producers and consumers which may not have been available at the time the composition was described. Third, the application must be activated or passivated depending on the presence or absence of mandatory producers or consumers. This section describes the main characteristics of the language and presents an example of a fire detection application.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

A. Language meta-model The main WADL language concepts and their relationships are represented in the meta-model in Fig. 2. These concepts include: WireApp: A wireapp represents a wired application which is composed of dynamic sets of producers, consumers and their connections called wires. A wireapp defines the overall lifecycle according to the dynamic sets which are required to activate and deactivate the data-flow in the application. wireapp life-cycle is discussed in more depth in the next section. WireSet: As its name suggests, a wireset represents a dynamic set of wires that connect producers and consumers. To support flexibility in wire creation, wiresets are not defined in terms of specific producer and consumer identifiers but are rather characterized by two filters that constrain the selection of producers and consumers. These filters, which are based on the properties associated to the producers and consumers, allow producer and consumer selection to be narrowed or widened. A narrow selection can be achieved by filtering producers or consumers based on their unique persistent identifiers, whereas, a wide selection can be achieved by filtering them according to other properties such as the type of measurements that they produce or consume. In Fig. 4, both wireset filters illustrate an intermediate selection where just the identity of the consumer matters. The mandatory attribute defines if the wireset is mandatory or optional for the wireapp life-cycle. Mandatory wiresets impose to have at least one producer-consumer connection to enable the wireapp activation. Wiresets also define a removal policy for the wires that are associated to them. The removal policy, which can take the values defined in the RemovePolicy enumeration, defines wire life-cycle policies. Filters and removal policies are discussed in more depth in the next section. WireApp -id: String -description: String -acyclic: boolean

composed of

RemovePolicy +KEEP_ALIVE +WHILE_PRODUCER +WHILE_CONSUMER +IF_DISCONNECTED

1 1..*

WireSet -id: String -description: String -producersFilter: String -consumersFilter: String -mandatory: boolean -removePolicy: RemovePolicy

characterized by 0..*

1

generates 1

Wire

0..*

0. .* connects 0. .1

0. .* connects 0..1

-properties

Property

Consumer

Producer

-name: String -value: String -type: String

Figure 2. Wired Application Description Language meta-model

Property: Properties are specified QoS properties used by the wires and the Producers in order to control the dataflow and alleviate consumers load. Properties attached to wiresets are used to initialize the generated wires. A frequently-used property is a filter expression on produced data to push a new value only when the variation with the previous one is significant. For instance, the filter presented in the example of Fig. 4, forces the value to be refreshed at least every 2000 milliseconds. B. Wired Application life-cycle The overall activity of a SBA is usually constrained by the presence or the absence of some producers or consumers. This activity is mainly defined by the dataflow between producers and consumers in the application. Handling the application lifecycle (i.e. activation and passivation) consists in starting and stopping the dataflows. Since the WireAdmin specification does not define those operations on wires, the application activation consists in the creation of wires whereas its passivation consists in the destruction of the previously created wires. In WADL, the wireapp cannot be activated until all mandatory wiresets match at least one producer with one consumer. WADL proposes four different behaviour policies when a consumer or a producer is removed from the running application. The default policy, called IF_DISCONNECTED, destroys the wire if either the consumer or the producer are removed. The WHILE_PRODUCER and WHILE_CONSUMER policies result in the destruction of the wire only if the producer or the consumer are removed respectively. Those two policies prevent inefficient wire destructions when the producers or the consumers disappear temporarily. Finally, the KEEP_ALIVE policy results in wires that are persistent once they are created and that must be removed programmatically. This policy is tied to the WireAdmin Service specification which requires the wire persistence. Finally, the wireapp is passivated when the last wire of a mandatory wireset is removed. As a consequence, all the wires in the wiresets of the wireapp are removed, including those created with the KEEP_ALIVE policies. C. Describing a fire central wired application In WADL, applications are described declaratively in an XML descriptor where the wireapp element is at the root. As a consequence, WADL descriptors contain one wireapp which is itself composed of one or more wiresets. Inside wiresets, filters are described using an LDAP syntax. Fig. 3 presents the components of a simple fire detection application similar to the fire central module included in Fig. 1. This module displays alert messages when abnormal temperatures (expressed in Kelvin) or smoke levels are detected in any room of the building. The topology of this SBA is described in the descriptor shown in Fig. 4. In this example, the wireapp is composed of two different wiresets. The first wireset ties a specific consumer (the fire central), filtered through its unique identifier, to any producers of temperature whose type can be either Measure (javax.measure.Measure) or

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

Measurement (org.osgi.utile.measurement.Measurement). The second wireset ties any smoke sensor that produces a SmokeLevel to a specific consumer, in this case the fire detection central. uses

Room100 Room100

Room199 Room199

flavors=j.m. Measure (SI.K)

flavors=o.o.m. Measurement (SI.K)

P P

P P

Temperature Temperature Sensor Sensor

Fire Fire Central Central

Temperature Temperature Sensor Sensor

WADL

flavors=Measure & Measurement flavors=c.a.d. (SI.K) SmokeLevel

C C

Room199 Room199 Smoke Smoke Detector Detector

WireAdmin WireAdmin Binder Binder

flavors=c.a.d. SmokeLevel

C C

PP

WireAdmin

P

C Wire

flavors=Unit (K)

P

C

P

Wire flavors=Unit (K)

C Wire

flavors=SmokeLevel

Wire Wire Admin Admin Service Service Impl Impl

Figure 3. A fire detection wired application

The “smoke2central” wireset is the only one mandatory for the application activation. So the wires are effectively created when at least one smoke level producer can be connected to the fire central component. In this fire detection application, two different wire removal policies are used. The WHILE_CONSUMER policy will not destroy the wires until the fire central consumer becomes unavailable, even if smoke detectors components were to be removed. IV.

EXECUTION ENVIRONMENT AND VALIDATION

This section presents the WireAdminBinder, an engine that interprets the WADL descriptors and that manages sets of wires and their life-cycle. It also presents a validation of the WireAdminBinder built on top of the Felix OSGi implementation [9]. A. WireAdminBinder and application design The WireAdminBinder is the engine that interprets WADL descriptors. It is implemented on top of the OSGi framework and delivered in a separate bundle. It relies on the WireAdmin Service to create persistent wires between consumers and producers according to the filters described in the wiresets. As producers and consumers are deployed or removed to/from the execution platform, the WireAdminBinder is notified and reacts by creating or removing wires according to the policies defined in the descriptor. Two wired application designs are conceivable by the application architect. A first one where the WireAdminBinder acts as a global orchestrator of all its wiresets. Another design considers producers and consumers as autonomous components managing their own wiresets. However, this latter choice has some drawbacks. First, the wiresets managed by the independent components cannot be passivated according to the state of the other independent wiresets. Second, the lack of a global architecture orchestrator can introduce some issues such as the difficulty of preventing circular dependencies. Furthermore, most of SBA are designed as a sequence of stages processing measurement flows. The first stage is generally a set of sensors producing raw measurements and the

last stage is a set of reporting tools consuming consolidated measurements. The intermediary stages can be components that consume measurements, process them and then produce measurements. When the produced measurements have the type (i.e., flavor in the WireAdmin terminology) of the consumed one, the architect has to take care of the wiresets definition in order to avoid cycles in the wire topology. The cycle prevention should be controlled at the wireapp level when the attribute acyclic is set to ‘true’. By default, the wire creation is not controlled in order to let the architect design applications use feedback loop in the architecture. B. Validation WADL and WireAdminBinder were experimented and validated in the context of the PISE project. This project was led by Schneider Electric, an electric-protection equipments manufacturer. The PISE project aimed to provide a component model for the development of dynamic sensor-based applications (SBAs). These applications are designed by domain analysts and experts by assembling and by configuring components selected from a domain-specific library. This component model, called SensorBean [10], offers three message exchange patterns to the developer: requestresponse, publish-subscribe events and dataflows. The latter is implemented by producer-consumer interactions. The producer components represent electric sensors that acquire electric measurements such as power or voltage. The consumer components represent reporting tools, online dashboards and actuators such as circuit breakers.

Figure 4. Wireapp describing a fire central application

The wire topology between components is described using the WADL formalism. Furthermore, these SBAs are dynamically deployed on industrial gateways installed inside

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

factories networks. A gateway can simultaneously run several sensor-based applications which may share sensors. V.

RELATED WORK

Sensor-based applications are a core element of the socalled “Internet of Things”. Architects and developers of such applications require middleware support to tackle the complexity of sensor infrastructures. These infrastructures are composed of distributed nodes with various capabilities (sensors, gateways, intermediate servers, corporate servers, etc) on various protocols. These middlewares [11] can provide programming paradigms to query the sensors network as a fully distributed database [12], to publish events triggered on threshold, or to push periodically measurements such as OMG Data Distribution Service, IEEE/NIST 1451.x or OSGi WireAdmin. They can enforce Quality of Service requirements such as communication latency or throughput, and provide means to discover and manage the nodes. Most of them are designed to meet the challenges of wireless sensors, focusing on the energy-efficient computing. But unlike the WireAdminBinder none of them provide a convenient way to build the dynamic bindings that occur between nodes cooperating in an application at runtime. Component models such as SOFA 2.0 [13] and O3MiSCID [14] provide dynamically reconfigurable dataflow connectors. Nevertheless, connections are set between identified components and the application life-cycle cannot be driven automatically by the presence of producers and consumers. ServiceBinder [15] proposes to automate binding and life-cycle controls for the OSGi platform but it addresses only clientserver interactions between services and does not fit for the SBA design. Architectural Description Languages or ADLs are modeling notations that allow the architecture of a system to be described, mainly in terms of components, connectors and configurations. The majority of existing ADLs deal with static composition, although ADLs such as Darwin support a degree of dynamism [5]. The WADL is different from an ADL in the sense that it does not describe components but dynamic sets of components. However, in ADL terms, wiresets could be regarded as collections of connectors and wireapps as configurations.

dynamic creation of wires that connect these two entities. WADL has been successfully used in a research project led by an industrial partner. It must be noted that although the work presented here is implemented on top of the OSGi framework and the WireAdmin Service, its concepts can easily be ported to any dynamic service platform. One area that could be explored in the future is the use of the properties associated to the wiresets to describe more complex quality of service properties. REFERENCES [1]

[2]

[3]

[4] [5]

[6]

[7]

[8] [9] [10]

[11]

[12] [13]

VI.

CONCLUSIONS

This paper has presented a description language to facilitate the construction of dynamic sensor-based applications built following the OSGi WireAdmin model. An interpreter for this language, called WireAdminBinder has also been implemented on top of the OSGi framework. Applications that are built using the WADL language support the introduction and removal of measurement producers and consumers through the

[14]

[15]

International Telecommunication Union, “The Internet of Things”, Executive Summary, ITU Internet Reports 2005, November 2005J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73. N. Nillson, “Connecting Producers and Consumers”, position paper at OOPSLA Worshop on References Architectures and Patterns for Pervasive Computing, 27 October 2003, Anaheim, CA, USA http://jeckstein.com/oopsla/pervasive-computing. D. Marples, S. Moyer, “Home Networking and Appliances”, in Diane Cook, Sajal Das, Smart Environments: Technologies, Protocols and Applications, Wiley, 2004. D. Snoonian, “Smart Building”, IEEE Spectrum, August 2003. N. Medvidovic, R.N. Taylor, “A Classification and Comparison Framework for Software Architecture Description Languages”, IEEE Transactions on Software Engineering, Vol. 26, No. 1, (pp. 70-96), January 2000. G. Bieber, J. Carpenter, “Introduction to Service-Oriented Programming”, OpenWings whitepaper, 2001, http://www.openwings.org/ H. Cervantes and R. S. Hall: “Chapter I: Service Oriented Concepts and Technologies”, in the book “Service-Oriented Software System Engineering: Challenges and Practices” (ISBN 1-59140-426-6) edited by Zoran Stojanovic and Ajantha Dahanayake, Idea Group Publishing, 2005. Open Services Gateway Alliance, “OSGi Service Platform Specification, Release 4”, Available online at http://www.osgi.org Apache Felix : http://cwiki.apache.org/FELIX/index.html C. Marin, M. Desertot, “SensorBean: A Component Platform for SensorBased Services”, proceedings of the International Worshop of Middleware for Pervasive and Ad-Hoc Compouting (MPAC), Grenoble, France, 28-29 November 2005. W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, M.A. Perillo, “Middleware to support sensor network applications”, IEEE Network, Volume18, Number 1, Jan/Feb 2004, pp. 6- 14. P. Bonnet, J. Gehrke, P. Seshadri, “Querying the physical world”, IEEE Personal Communication, Volume 7, October 2000, pp pp. 10-15. T. Bures, P. Hnetynka, F. Plasil, “SOFA 2.0: Balancing Advanced Features in a Hierarchical Component Model”. SERA 2006: 40-48. R. Emonet, D. Vaufreydaz, P. Reignier, J. Letessier, “O3MiSCID: an Object Oriented Opensource Middleware for Service Connection, Introspection and Discovery”, 1st IEEE International Workshop on Services Integration in Pervasive Environments - June 2006. H. Cervantes, R.S. Hall, “Automating Service Dependency Management in a Service-Oriented Component Model”, 6th International Symposium on Component-Based Software Engineering (CBSE), Portland, OR, 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

des documents recommandant

[image: alt]

An Architecture Description Language for Dynamic

The second wireset ties any smoke sensor that produces a. SmokeLevel to a specific consumer, in this case the fire detection central. Wire Admin Service Impl.

[image: alt]

Implementing Dynamic Multipoint VPN for IPv6 - Description

First Published: July 11, 2008. Last Updated: ... routing encapsulation (GRE) tunnels, IP security (IPsec) encryption, and the Next Hop Resolution ... To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An ... NHRPâ€”A client and se

[image: alt]

An Efficient Service Oriented Architecture for

and video streams toward a control room. Categories and ... and controlling. Most of the sensors Service Platform -. Technical Whitepaper Revision 4.0.

[image: alt]

an xml-driven architecture for instrumentation

1. AN XML-DRIVEN ARCHITECTURE FOR. INSTRUMENTATION COCKPIT ... compatibility, and seamless transitions between project management, ... along with a variety of software tools to provide flight test engineers with ... configure engineering unit convers

[image: alt]

Software Architecture for Dynamic Adaptation of ... - Semantic Scholar

La collaboration des camÃ©ras avec un composant logiciel d'analyse vidÃ©o permet de dÃ©terminer la trajectoire probable de l'intrus et par consÃ©quent de dÃ©marrer les prochaines camÃ©ras susceptibles de se trouver sur cette trajectoire ou d'orienter

[image: alt]

The Fortress Language Specification - Description

Jan 24, 2015 - We discuss components and APIs in detail in Chapter 22. To address Fortress includes support for automated program testing. New tests in ...

[image: alt]

The Fortress Language Specification - Description

Jan 24, 2015 - the absence of an actual field. then A1,0 evaluates to 4 actual order of memory operations in a given program execution is memory order, values as elements, and the latter has BinaryEndianWord values as ele-.

[image: alt]

Plant Architecture: A Dynamic, Multilevel and ... - amapmed

Since its introduction and definition by von Goethe. (1790), plant morphology has that are currently used in plant architecture and mor- phology description.

[image: alt]

Cognitive System Formalism: Analysis of an Architecture for Human

is the key problem for the study of CS since the changes must be taken into account in ... to bridge the gap between dynamical systems theories, long life learning dynamics of the interactions with the environment is reduced to an attraction ..

[image: alt]

An Architecture for File System Development John Shelby Heidemann

8 aoÃ»t 1991 - parts: a core of memory management, process control, and simple inter- dump getattr rename inactive cmp setattr mkdir lockctl realvp.

[image: alt]

Specification of an Open Architecture for Interactive ... - Nicolas Szilas

on the storytelling process, these systems include a core narrative engine, ... Simplicity: our users are not system engineers but researchers in IDS and advanced ... adapter, that is inserted between a module and the Director, to cover cases ...

[image: alt]

An Architecture for Large Scale and High Performance Medical

Jun 9, 2003 - These k ind of queries imply: . To preprocess the images in order to generate indices useful for image retrieval. Image processing allows to ...

[image: alt]

AN EFFICIENT AND SCALABLE ARCHITECTURE FOR ... - Xun ZHANG

Pedro O. Domingos, Fernando M. Silva, HorÃ¡cio C. Neto. Dept. of Electrical and Computer Engineering, IST/INESC-ID, Portugal ... tude over high-end software implementations are possible, using a GAs and embedded systems. The results ...

[image: alt]

An experimental approach for dynamic investigation of the trapping

Feb 6, 2003 - their electron irradiation in a scanning electron microscope (SEM) to be studied and the ... electron microscope to be done but also to bring new.

[image: alt]

Dynamic Causal Modelling (DCM) for fMRI : an introduction

Analysis of regionally specific effects fMRI signal change (%) x. 1 x. 2 x. 3 ... DCM provides an observation model for neuroimaging data, e.g. fMRI,. M/EEG ...

[image: alt]

An Adaptative Agent Architecture for Holonic Multi-Agent Systems

good (respectively wrong) answer to a request. tibodies as reactions/answers. It constitutes a benchmark for several research fields, test different immune systems notably those described in the previous section. Moreover, subsum

[image: alt]

AN FPGA NETWORK ARCHITECTURE FOR ... - Xun ZHANG page

This paper presents a DES/3DES core that will support. Cipher Block Chaining (CBC) and also has a built in keygen that together take up about 10% of the ...

[image: alt]

An Architecture based on Linked Data technologies for thefr

initiatives can retain some control over their information of materials and courses in a non-proprietary format. LOCWD ec01.pdf. Problems: Getting Started. Lab http://ocw.mit.edu/courses/electrical- ... Tutorial http://ocw.uc3m.es/ingenieria-.

[image: alt]

an architecture for prototyping and application ... - Alain Pagani

requirements of all possible application scenarios at the same time. ... application scenario. This paper â€œSURF: Speeded Up Robust Featuresâ€�, ETH Zurich.

[image: alt]

Static and Dynamic Data Reconciliation for an Irrigation Canal

of open-channel irrigation canals are managed manually, with large water losses ... solution that is often used e.g. in aeronautics is to equip the system with ... ology. Section 3 explains data reconciliation principle in the static and dynamic case

[image: alt]

An Expressive Conversation Language for Artificial ... - Yannick Fouquet

the expectation will constitute a list of commitments (com- parable to ... and dialogue strategies. This aspect is A model for negociation in teaching-learning.

[image: alt]

Description and simulation of dynamic mobility networks

Scherrer, Analysis of Dynamic Sensor Networks: Power Law Then. What?, in Comsware Better understand the intrinsic characteristics / properties of dynamic ...

[image: alt]

MODELING PROSODY FOR LANGUAGE

Japanese is mora-timed. ... (that may be zero) and V may result from the merg- English German French Spanish Mandarin Vietnamese Japanese Korean ...

[image: alt]

MathMorphs: An Environment for Learning and Doing Math - Description

our love and gratitude. ... The MorphicWrappers let you talk to any morph using CodeBalloons the book "Text Compression" was acceptable in Smalltalk.

×
Report An Architecture Description Language for Dynamic Sensor-Based

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

