

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Advanced Test Coverage Criteria: Specify and ... - Nikolai Kosmatov

Oct 10, 2017 - Automate test suite generation & coverage measure. Coverage criterion = objectives to be fulfilled by the test suite. Criterion guides automation.

 Télécharger le PDF

 2MB taille
 1 téléchargements
 226 vues

 commentaire

 Report

Advanced Test Coverage Criteria: Specify and Measure, Cover and Unmask S´ebastien Bardin and Nikolai Kosmatov joint work with Omar Chebaro, Micka¨el Delahaye, Micha¨el Marcozzi, Mike Papadakis, Virgile Prevosto. . . CEA, LIST, Software Safety and Security Lab Paris-Saclay, France

ICTSS 2017, St. Petersburg, October 10th, 2017

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

1/ 67

Context: White-Box Testing Testing process Generate a test input Run it and check for errors Estimate coverage: if enough stop, else loop

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

2/ 67

Context: White-Box Testing

Framework: white-box software testing process Automate test suite generation & coverage measure Coverage criterion = objectives to be fulfilled by the test suite Criterion guides automation Can be part of industrial normative requirements

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

3/ 67

Coverage criteria in white-box testing Variety and sophistication gap between literature and testing tools

Literature: 28 various white-box criteria in the Ammann & Offutt book

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

4/ 67

Coverage criteria in white-box testing Tools: Criteria seen as very dissimilar bases for automation Restricted to small subsets of criteria Extension is complex and costly Tool name Gcov

BBC

FC

DC

X

X

X

CC

X

Parasoft Semantic Designs Testwell CTC++

X

MCDC

MCC

BP

X

X

X

X

X

X

GACC

Other 0/19

X

Bullseye

DCC

X

0/19 X

X

0/19 0/19

X

X

0/19

Global goal: bridge the gap between criteria and testing tools

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

5/ 67

Main ingredients of the talk: Labels: a generic specification mechanism for coverage criteria ◮ ◮

can easily encode a large class of criteria a semantic view, with a formal treatment

DSE⋆ : an efficient test generation technique for labels ◮ ◮

an optimized version of DSE (Dynamic Symbolic Execution) no exponential blowup of the search space

LUncov: an efficient technique for detection of infeasible objectives ◮

based on existing static analysis techniques

LTest: an all-in-one testing toolset ◮

on top of Frama-C and PathCrawler

HTOL: Hyperlabel Specification Language, extension of labels ◮

capable to encode almost all common criteria including MCDC

[Bardin et al., ICST 2014, TAP 2014, ICST 2015] [Marcozzi et al., ICST 2017 (research), ICST 2017 (tool)] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

6/ 67

Main ingredients of the talk: Labels: a generic specification mechanism for coverage criteria ◮ ◮

can easily encode a large class of criteria a semantic view, with a formal treatment

DSE⋆ : an efficient test generation technique for labels ◮ ◮

an optimized version of DSE (Dynamic Symbolic Execution) no exponential blowup of the search space

LUncov: an efficient technique for detection of infeasible objectives ◮

based on existing static analysis techniques

LTest: an all-in-one testing toolset ◮

on top of Frama-C and PathCrawler

HTOL: Hyperlabel Specification Language, extension of labels ◮

capable to encode almost all common criteria including MCDC

Reminder: Goals [Bardin et al., ICST 2014, TAP 2014, ICST 2015] Cover andICST Unmask [MarcozziSpecify et al., and ICSTMeasure, 2017 (research), 2017 (tool)] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

6/ 67

Main ingredients of the talk: Labels: a generic specification mechanism for coverage criteria ◮ ◮

can easily encode a large class of criteria a semantic view, with a formal treatment

Specify and Measure,

DSE⋆ : an efficient test generation technique for labels ◮ ◮

an optimized version of DSE (Dynamic Symbolic Execution) no exponential blowup of the search space Cover

LUncov: an efficient technique for detection of infeasible objectives ◮

based on existing static analysis techniques

and Unmask

LTest: an all-in-one testing toolset ◮

on top of Frama-C and PathCrawler

HTOL: Hyperlabel Specification Language, extension of labels ◮

capable to encode almost all common criteria including MCDC

Reminder: Goals [Bardin et al., ICST 2014, TAP 2014, ICST 2015] Cover andICST Unmask [MarcozziSpecify et al., and ICSTMeasure, 2017 (research), 2017 (tool)] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

6/ 67

Outline 1

Labels

2

LTest: an all-in-one testing toolset

3

Efficient test generation for labels Dynamic Symbolic Execution (DSE) DSE⋆ : optimized test generation for labels

4

Detection of infeasible test objectives

5

Hyperlabel Specification Language (HTOL)

6

Conclusion

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

7/ 67

Labels and the notion of simulation (1/2)

Basic definitions

Example:

Given a program P, a label l is a pair (loc, ϕ), where: ϕ is a well-defined predicate at location loc in P ϕ contains no side-effects

S´ ebastien Bardin, Nikolai Kosmatov

statement_1 ; // l1: x==y // l2: !(x==y) if (x == y && a < b) {...}; statement_3 ;

Advanced Test Coverage Criteria

8/ 67

Labels and the notion of simulation (2/2)

Basic definitions

Example:

a test datum t covers l if P(t) reaches loc and satisfies ϕ new criterion LC label coverage: requires to cover the labels

statement_1 ; // l1: x==y // l2: !(x==y) if (x == y && a < b) {...}; statement_3 ;

a criterion C can be simulated by LC if for any P, after adding “appropriate” labels in P, TS covers C ⇔ TS covers LC.

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

9/ 67

Simulation of coverage criteria by labels: CC

statement_1 ; if (x == y && a < b) {...}; statement_3 ;

−−−−−→

statement_1 ; // l1: x==y // l2: !(x==y) // l3: a= 0) return 1; // (+ ,+): quadrant 1 if (x1 = 0) return 2; // (- ,+): quadrant 2 if (x1 0

∧ ∧ ∧ ... ∧ ∧

y1 ≤ 0 y1 ≤ 0 y1 > 0

∧ ∧ ∧

y2 ≤ 0 y2 > 0 y2 ≤ 0

y1 > 0 y1 > 0

∧ ∧

y2 ≤ 0 y2 > 0

Result: Number of generated labels 16 labels generated for each conditional = 64 labels in total Reminder: Goals Specify [X] and Measure [], Cover [] and Unmask [] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

22/ 67

Step 1: Specify test objectives for MCC LTest automatically encodes test objectives by labels Example. For the 3nd conditional (quadrant 3), 16 labels are inserted: x1 ≤ 0 x1 ≤ 0 x1 ≤ 0

∧ ∧ ∧

x2 ≤ 0 x2 ≤ 0 x2 ≤ 0

x1 > 0 x1 > 0

∧ ∧

x2 > 0 x2 > 0

∧ ∧ ∧ ... ∧ ∧

y1 ≤ 0 y1 ≤ 0 y1 > 0

∧ ∧ ∧

y2 ≤ 0 y2 > 0 y2 ≤ 0

y1 > 0 y1 > 0

∧ ∧

y2 ≤ 0 y2 > 0

Result: Number of generated labels 16 labels generated for each conditional = 64 labels in total Reminder: Goals Specify [X] and Measure [], Cover [] and Unmask [] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

22/ 67

Step 2: Measure the coverage of a test suite LTest automatically measures test coverage Example. For the test suite: Test 1 : x1 = 5, y 1 = 8, x2 = 10, y 2 = −15 Test 2 : x1 = 40, y 1 = 15, x2 = −20, y 2 = 26 Result: Coverage ratio computed 8 labels are covered out of 64, thus MCC coverage ratio is 25% Each test case is executed only once, and all covered test objectives are recorded Reminder: Goals Specify [X] and Measure [X], Cover [] and Unmask [] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

23/ 67

Step 2: Measure the coverage of a test suite LTest automatically measures test coverage Example. For the test suite: Test 1 : x1 = 5, y 1 = 8, x2 = 10, y 2 = −15 Test 2 : x1 = 40, y 1 = 15, x2 = −20, y 2 = 26 Result: Coverage ratio computed 8 labels are covered out of 64, thus MCC coverage ratio is 25% Each test case is executed only once, and all covered test objectives are recorded Reminder: Goals Specify [X] and Measure [X], Cover [] and Unmask [] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

23/ 67

Step 3: Generate test inputs to Cover MCC criterion LTest automatically generates test inputs (using DSE⋆) Results of DSE⋆ test generation Explores 409 program program paths Generates a test suite that covers 58 labels out of 64

Reminder: Goals Specify [X] and Measure [X], Cover [X] and Unmask[] What about the remaining 6 labels? Are they really uncoverable? If so, could they be detected before test generation?

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

24/ 67

Step 3: Generate test inputs to Cover MCC criterion LTest automatically generates test inputs (using DSE⋆) Results of DSE⋆ test generation Explores 409 program program paths Generates a test suite that covers 58 labels out of 64

Reminder: Goals Specify [X] and Measure [X], Cover [X] and Unmask[] What about the remaining 6 labels? Are they really uncoverable? If so, could they be detected before test generation?

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

24/ 67

Step 3: Generate test inputs to Cover MCC criterion LTest automatically generates test inputs (using DSE⋆) Results of DSE⋆ test generation Explores 409 program program paths Generates a test suite that covers 58 labels out of 64

Reminder: Goals Specify [X] and Measure [X], Cover [X] and Unmask[] What about the remaining 6 labels? Are they really uncoverable? If so, could they be detected before test generation?

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

24/ 67

Step 4: Unmask uncoverable labels LTest automatically detects uncoverable labels (using LUncov) Example of uncoverable label (2nd conditional) if (x1 >= 0 && x2 >= 0 && y1 >= 0 && y2 >= 0) return 1; // (+ ,+): quadrant 1 // l28: x1 > 0 ∧ x2 > 0 ∧ y 1 ≥ 0 ∧ y 2 ≥ 0 if (x1 = 0) return 2; // (- ,+): quadrant 2

Results of detection with LUncov 6 labels are detected as uncoverable through static analysis Benefits for test generation less paths to consider: here 284 paths instead of 409 Reminder: Goals Specify [X] and Measure [X], Cover [X] and Unmask[X] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

25/ 67

Step 4: Unmask uncoverable labels LTest automatically detects uncoverable labels (using LUncov) Example of uncoverable label (2nd conditional) if (x1 >= 0 && x2 >= 0 && y1 >= 0 && y2 >= 0) return 1; // (+ ,+): quadrant 1 // l28: x1 > 0 ∧ x2 > 0 ∧ y 1 ≥ 0 ∧ y 2 ≥ 0 if (x1 = 0) return 2; // (- ,+): quadrant 2

Results of detection with LUncov 6 labels are detected as uncoverable through static analysis Benefits for test generation less paths to consider: here 284 paths instead of 409 Reminder: Goals Specify [X] and Measure [X], Cover [X] and Unmask[X] S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

25/ 67

Outline 1

Labels

2

LTest: an all-in-one testing toolset

3

Efficient test generation for labels Dynamic Symbolic Execution (DSE) DSE⋆ : optimized test generation for labels

4

Detection of infeasible test objectives

5

Hyperlabel Specification Language (HTOL)

6

Conclusion

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

26/ 67

Dynamic Symbolic Execution Dynamic Symbolic Execution [dart,cute,pathcrawler,exe,sage,pex,klee,. . .] X very powerful approach to white-box test generation X many tools and many successful case-studies since mid 2000’s X arguably one of the most wide-spread use of formal methods in “common software” [SAGE at Microsoft]

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

27/ 67

Dynamic Symbolic Execution Dynamic Symbolic Execution [dart,cute,pathcrawler,exe,sage,pex,klee,. . .] X very powerful approach to white-box test generation X many tools and many successful case-studies since mid 2000’s X arguably one of the most wide-spread use of formal methods in “common software” [SAGE at Microsoft] Symbolic Execution [King 70’s] consider a program P on input v, and a given path σ a path predicate ϕσ for σ is a formula s.t. for any input v v satisfies ϕσ ⇔ P(v) follows σ old idea, recently renewed interest [requires powerful solvers]

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

27/ 67

Dynamic Symbolic Execution Dynamic Symbolic Execution [dart,cute,pathcrawler,exe,sage,pex,klee,. . .] X very powerful approach to white-box test generation X many tools and many successful case-studies since mid 2000’s X arguably one of the most wide-spread use of formal methods in “common software” [SAGE at Microsoft] Symbolic Execution [King 70’s] consider a program P on input v, and a given path σ a path predicate ϕσ for σ is a formula s.t. for any input v v satisfies ϕσ ⇔ P(v) follows σ old idea, recently renewed interest [requires powerful solvers] Dynamic Symbolic Execution [Korel+, Williams+, Godefroid+] interleaves dynamic and symbolic executions drives the search towards feasible paths for free gives hints for relevant under-approximations S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

27/ 67

Dynamic Symbolic Execution (2) input: a program P output: a test suite TS covering all feasible paths of Paths ≤k (P) pick an uncovered path σ ∈ Paths ≤k (P) is the path predicate ϕσ satisfiable? if SAT(s) then add a new pair < s, σ > into TS loop until no more paths to cover

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

[smt solver]

28/ 67

Dynamic Symbolic Execution (2) input: a program P output: a test suite TS covering all feasible paths of Paths ≤k (P) pick an uncovered path σ ∈ Paths ≤k (P) is the path predicate ϕσ satisfiable? if SAT(s) then add a new pair < s, σ > into TS loop until no more paths to cover

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

[smt solver]

28/ 67

Dynamic Symbolic Execution (2) input: a program P output: a test suite TS covering all feasible paths of Paths ≤k (P) pick an uncovered path σ ∈ Paths ≤k (P) is the path predicate ϕσ satisfiable? if SAT(s) then add a new pair < s, σ > into TS loop until no more paths to cover

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

[smt solver]

28/ 67

Dynamic Symbolic Execution (2) input: a program P output: a test suite TS covering all feasible paths of Paths ≤k (P) pick an uncovered path σ ∈ Paths ≤k (P) is the path predicate ϕσ satisfiable? if SAT(s) then add a new pair < s, σ > into TS loop until no more paths to cover

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

[smt solver]

28/ 67

Dynamic Symbolic Execution (2) input: a program P output: a test suite TS covering all feasible paths of Paths ≤k (P) pick an uncovered path σ ∈ Paths ≤k (P) is the path predicate ϕσ satisfiable? if SAT(s) then add a new pair < s, σ > into TS loop until no more paths to cover

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

[smt solver]

28/ 67

Dynamic Symbolic Execution (2) input: a program P output: a test suite TS covering all feasible paths of Paths ≤k (P) pick an uncovered path σ ∈ Paths ≤k (P) is the path predicate ϕσ satisfiable? if SAT(s) then add a new pair < s, σ > into TS loop until no more paths to cover

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

[smt solver]

28/ 67

Dynamic Symbolic Execution (2) input: a program P output: a test suite TS covering all feasible paths of Paths ≤k (P) pick an uncovered path σ ∈ Paths ≤k (P) is the path predicate ϕσ satisfiable? if SAT(s) then add a new pair < s, σ > into TS loop until no more paths to cover

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

[smt solver]

28/ 67

The problem Dynamic Symbolic Execution X very powerful approach to white-box test generation X arguably one of the most wide-spread use of formal methods in “common software”

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

29/ 67

The problem Dynamic Symbolic Execution X very powerful approach to white-box test generation X arguably one of the most wide-spread use of formal methods in “common software” × lack of support for many coverage criteria

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

29/ 67

The problem Dynamic Symbolic Execution X very powerful approach to white-box test generation X arguably one of the most wide-spread use of formal methods in “common software” × lack of support for many coverage criteria Challenge: extend DSE to a large class of coverage criteria well-known problem recent efforts in this direction through instrumentation [Active Testing, Mutation DSE, Augmented DSE]

limitations: ◮ ◮ ◮

exponential explosion of the search space [APex: 272x avg] very implementation-centric mechanisms unclear expressiveness

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

29/ 67

Direct instrumentation P ′

[APex, Mutation DSE]

Covering label l ⇔ Covering branch True

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

30/ 67

Direct instrumentation P ′

[APex, Mutation DSE]

Covering label l ⇔ Covering branch True

X

sound & complete instrumentation w.r.t. LC

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

30/ 67

Direct instrumentation P ′ is not good enough

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

31/ 67

Direct instrumentation P ′ is not good enough

Non-tightness 1

×

P ′ has exponentially more paths than P

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

31/ 67

Direct instrumentation P ′ is not good enough

Non-tightness 1

×

P ′ has exponentially more paths than P

Non-tightness 2

×

Paths in P ′ too complex ◮

◮

at each label, require to cover p or to cover ¬p π ′ covers up to N labels

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

31/ 67

Direct instrumentation P ′ is not good enough

X ×

sound & complete instrumentation w.r.t. LC dramatic overhead [theory & practice]

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

31/ 67

Our approach

The DSE⋆ algorithm Tight instrumentation P ⋆ : totally prevents “complexification” Iterative Label Deletion: discards some redundant paths Both techniques can be implemented in a black-box manner

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

32/ 67

DSE⋆ : Tight Instrumentation P ⋆

Covering label l ⇔ Covering exit(0)

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

33/ 67

DSE⋆ : Tight Instrumentation P ⋆

Covering label l ⇔ Covering exit(0)

X

sound & complete instrumentation w.r.t. LC

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

33/ 67

DSE⋆ : Direct vs tight instrumentation, P ′ vs P ⋆

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

34/ 67

DSE⋆ : Direct vs tight instrumentation, P ′ vs P ⋆

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

34/ 67

DSE⋆ : Direct vs tight instrumentation, P ′ vs P ⋆

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

34/ 67

DSE⋆ : Direct vs tight instrumentation, P ′ vs P ⋆

Tightness

X X

P⋆ has (only) linearly more paths than P paths in P⋆ are simple: covers ≤ 1 label

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

34/ 67

DSE⋆ : Direct vs tight instrumentation, P ′ vs P ⋆

X X

sound & complete instrumentation w.r.t. LC no complexification of the search space

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

34/ 67

DSE⋆ : Iterative Label Deletion Observations we need to cover each label only once yet, DSE explores paths of P⋆ ending in already-covered labels we burden DSE with “useless” paths w.r.t. LC

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

35/ 67

DSE⋆ : Iterative Label Deletion Observations we need to cover each label only once yet, DSE explores paths of P⋆ ending in already-covered labels we burden DSE with “useless” paths w.r.t. LC Solution: Iterative Label Deletion keep a covered/uncovered status for each label symbolic execution ignores paths ending in a covered label dynamic execution updates the status [truly requires DSE] Implementation symbolic part: a slight modification of P ⋆ dynamic part: a slight modification of P ′

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

35/ 67

DSE⋆ : Iterative Label Deletion Observations we need to cover each label only once yet, DSE explores paths of P⋆ ending in already-covered labels we burden DSE with “useless” paths w.r.t. LC Solution: Iterative Label Deletion keep a covered/uncovered status for each label symbolic execution ignores paths ending in a covered label dynamic execution updates the status [truly requires DSE] Implementation symbolic part: a slight modification of P ⋆ dynamic part: a slight modification of P ′ Iterative Label Deletion is relatively complete w.r.t. LC S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

35/ 67

DSE⋆ : Iterative Label Deletion (2)

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

36/ 67

DSE⋆ : Iterative Label Deletion (3)

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

37/ 67

Summary

The DSE⋆ algorithm Tight instrumentation P ⋆ : totally prevents “complexification” Iterative Label Deletion: discards some redundant paths Both techniques can be implemented in black-box

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

38/ 67

Experiments Implementation inside PathCrawler follows DSE⋆ search heuristics: “label-first DFS” run in deterministic mode Goal of experiments evaluate DSE⋆ versus DSE’ evaluate overhead of handling labels Benchmark programs SQLite, OpenSSL 12 programs taken from standard DSE benchmarks (Siemens, Verisec, MediaBench) 3 coverage criteria: CC, MCC, WM S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

39/ 67

Experiments (2) Results DSE’: 4 timeouts (TO), max overhead 122x [excluding TO] DSE⋆ : no TO, max overhead 7x (average: 2.4x) on one example, 94s instead of a TO [1h30] DSE⋆ achieves very high LC-coverage [> 90% on 28/36] after a static analysis step for detection of uncoverable labels, it becomes even higher [> 99%]

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

40/ 67

Experiments (2) Results DSE’: 4 timeouts (TO), max overhead 122x [excluding TO] DSE⋆ : no TO, max overhead 7x (average: 2.4x) on one example, 94s instead of a TO [1h30] DSE⋆ achieves very high LC-coverage [> 90% on 28/36] after a static analysis step for detection of uncoverable labels, it becomes even higher [> 99%]

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

40/ 67

Experiments (2) Results DSE’: 4 timeouts (TO), max overhead 122x [excluding TO] DSE⋆ : no TO, max overhead 7x (average: 2.4x) on one example, 94s instead of a TO [1h30] DSE⋆ achieves very high LC-coverage [> 90% on 28/36] after a static analysis step for detection of uncoverable labels, it becomes even higher [> 99%]

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

40/ 67

Experiments (2) Results DSE’: 4 timeouts (TO), max overhead 122x [excluding TO] DSE⋆ : no TO, max overhead 7x (average: 2.4x) on one example, 94s instead of a TO [1h30] DSE⋆ achieves very high LC-coverage [> 90% on 28/36] after a static analysis step for detection of uncoverable labels, it becomes even higher [> 99%]

Conclusion DSE⋆ performs significantly better than DSE’ The overhead of handling labels is kept reasonable still room for improvement S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

40/ 67

Outline 1

Labels

2

LTest: an all-in-one testing toolset

3

Efficient test generation for labels Dynamic Symbolic Execution (DSE) DSE⋆ : optimized test generation for labels

4

Detection of infeasible test objectives

5

Hyperlabel Specification Language (HTOL)

6

Conclusion

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

41/ 67

Uncoverable test objectives in testing

The enemy: Uncoverable test objectives waste generation effort, imprecise coverage ratios reason: structural coverage criteria are ... structural detecting uncoverable test objectives is undecidable Recognized as a hard and important issue in testing no practical solution not so much work (compared to test gen.) real pain (e.g. aeronautics, mutation testing)

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

42/ 67

Detection goals

Automatic detection of uncoverable test objectives a sound method applicable to a large class of coverage criteria strong detection power, reasonable speed rely as much as possible on existing verification methods: Observation: Label (loc, p) is uncoverable

S´ ebastien Bardin, Nikolai Kosmatov

⇔

Assertion assert (¬p); at location loc is valid

Advanced Test Coverage Criteria

43/ 67

Focus: checking assertion validity

Forward abstract interpretation, or Value Analysis (VA) [state approximation] ◮ ◮ ◮

compute an invariant of the program then, analyze all assertions (labels) in one run global but limited reasoning

Weakest precondition calculus (WP) [goal-oriented] ◮ ◮ ◮

perform a dedicated check for each assertion a single check usually easier, but many of them local but precise reasoning

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

44/ 67

Example: program with two uncoverable labels int main () { int a = nondet (0 .. 20); int x = nondet (0 .. 1000); return g (x , a); } int g (int x , int a) { int res ; if (x + a >= x) res = 1; // the only possible outcome else res = 0; // l1: res == 0 // l2: res == 2 return res ; } S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

45/ 67

Example: program with two valid assertions int main () { int a = nondet (0 .. 20); int x = nondet (0 .. 1000); return g (x , a); } int g (int x , int a) { int res ; if (x + a >= x) res = 1; // the only possible outcome else res = 0; //@ assert res != 0 //@ assert res != 2 return res ; } S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

46/ 67

Example: program with two valid assertions int main () { int a = nondet (0 .. 20); int x = nondet (0 .. 1000); return g (x , a); } int g (int x , int a) { int res ; if (x + a >= x) res = 1; // the only possible outcome else res = 0; //@ assert res != 0 // both VA and WP fail //@ assert res != 2 // detected as valid return res ; } S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

46/ 67

LUncov Methodology: Combine VA ⊕ WP

Goal: get the best of the two worlds Idea: VA passes to WP the global information that WP needs Which information, and how to transfer it? VA computes variable domains WP naturally takes into account assumptions (assume) Proposed solution: VA exports computed variable domains in the form of WP-assumptions

S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

47/ 67

Example: alone, both VA and WP fail int main () { int a = nondet (0 .. 20); int x = nondet (0 .. 1000); return g (x , a); } int g (int x , int a) {

int res ; if (x + a >= x) res = 1; // the only possible outcome else res = 0; //@ assert res != 0 // both VA and WP fail return res ; } S´ ebastien Bardin, Nikolai Kosmatov

Advanced Test Coverage Criteria

48/ 67

Example: combination VA⊕WP succeeds int main () { int a = nondet (0 .. 20); int x = nondet (0 .. 1000); return g (x , a); } int g (int x , int a) { //@ assume 0

des documents recommandant

[image: alt]

Advanced Test Coverage Criteria: Specify and ... - Nikolai Kosmatov

Feb 27, 2018 - HTOL: Hyperlabel Specification Language, extension of labels. â–» capable to strong detection power, reasonable speed rely as much as ...

[image: alt]

Advanced Test Coverage Criteria: Specification ... - Nikolai Kosmatov

Jun 26, 2017 - Global goal : bridge the gap between criteria and testing tools ... many tools and many successful case-studies since mid 2000's arguably one ...

[image: alt]

Symbolic Execution and Advanced Test Coverage ... - Nikolai Kosmatov

Jun 23, 2015 - output : a test suite TS covering all feasible paths of Pathsâ‰¤k(P) pick an uncovered path Ïƒ âˆˆ Pathsâ‰¤k(P) is the path predicate Ï•Ïƒ satisfiable ?

[image: alt]

Boundary Coverage Criteria for Test Generation ... - Nikolai Kosmatov

particularly smart cards and transport systems. Keywords: ... domain of smart card software (GSM 11-11 standard [18],. Java Card angle specification fect i.

[image: alt]

Specify and Measure, Cover and Unmask: A Proof ... - Nikolai Kosmatov

Jun 28, 2018 - can easily encode a large class of criteria A Proof-friendly View of Advanced Test Coverage Criteria. 9/ 67 no practical solution.

[image: alt]

Test Case Generation with PATHCRAWLER ... - Nikolai Kosmatov

In current software engineering practice, testing [27, 25, 34, 3] is the primary approach Two ways to instrument a label: direct and tight instrumentation. Fig. 6.

[image: alt]

slides - Nikolai Kosmatov

Aug 27, 2012 - 3 (not a triangle), 2 (equilateral), 1 (isosceles), 0 (other). Robust : validity of inputs is tested go looking for bugs by sub-dividing the paths ...

[image: alt]

Value Analysis, Program Slicing and Test ... - Nikolai Kosmatov

1 Introduction. Software validation remains a crucial part in software development process. 2a, value analysis returns five alarms for (the statements at) lines 6 ...

[image: alt]

Concolic Test Generation and the Cloud - Nikolai Kosmatov

Concolic testing is an advanced technique of structural unit testing, that ... in the cloud whose limited evaluation version is available at (Kosmatov, 2010b). long execution traces with billions of instructions, for symbolic execution at

[image: alt]

All-Paths Test Generation for Programs with ... - Nikolai Kosmatov

path-test generation based on symbolic execution, it is con- venient to distinguish two types: Eq(a[U], V) represents the delayed equality a[U] = V, and Aff(a[U] ...

[image: alt]

1.3 COVERAGE CRITERIA FOR TESTING

test: x=[2, 3, 5]; y = 2. // test: x=[0, 1, 0]. //. Expected = 0. //. Expected = 2 ... Java compiler â€“ the number of potential inputs to the compiler is not just all Java.

[image: alt]

JournÃ©e CAP'TRONIC - Nikolai Kosmatov

Nov 29, 2017 - Invalid array index. â–· Invalid pointer ... Use the command frama-c-gui -wp -wp-rte file.c ... alarms for potential invalid ACSL annotations.

[image: alt]

Combining Static and Dynamic Analyses for ... - Nikolai Kosmatov

form for collaborative verification of C programs, and Search Lab's FLINDER ... The recent Heartbleed bug [6] illustrated once again that critical security flaws can ... TU Graz, Austria), and authentication software for complex distributed networks

[image: alt]

Combinations of Static and Dynamic Analyses in ... - Nikolai Kosmatov

Nov 2, 2016 - Frama-C, a platform for analysis of C code. Detecting runtime errors by static 9 benchmarks with known errors (from Apache, libgd, . . .).

[image: alt]

Static and Dynamic Verification of Relational ... - Nikolai Kosmatov

industrial case study on smart sensor software [7] (emphasis ours): by the PISCO project5) whose proof needs to use property R3. Thanks //frama-c.com/download/frama-c-wp-manual.pdf. 5. ... In: Proc. of the ACM Symposium on Applied Comput

[image: alt]

Projective Resolutions and Yoneda Algebras for ... - Nikolai KOSMATOV

Chair of Higher Algebra, Dept. of Mathematics ... conjecture the general form of the bicomplex for arbitrary parameters. The ... Section 3 introduces the notion of a. 2 {e(i, j) âˆˆ E |i, j âˆˆ V } and Ï• = Ï•|E . Note that a subdiagram D of D c

[image: alt]

Combinations of Static and Dynamic Analyses in ... - Nikolai Kosmatov

Sep 10, 2015 - Verimag, Grenoble, September 10th, 2015. N. Kosmatov ... Frama-C, a platform for analysis of C code. Detecting Frama-C++ (FP7 Stance).

[image: alt]

ThÃ¨se de do ctorat - Nikolai Kosmatov

5.5 Example of a finite trajectory ending without error using program p of Figure 5.4 errors in the original program and in its slices, and thus answer the two questions asked above. To ensure Strictly speaking, the results 240.

[image: alt]

Structural Testing with PATHCRAWLER. Tutorial ... - Nikolai Kosmatov

PathCrawler-online structural testing tool, the user must pro- vide not only the full source code, but also must set the test parameters and program the oracle.

[image: alt]

A Constraint Solver for Sequences - Nikolai Kosmatov

1 Introduction. Research work ... The decidability of word equations with an addi- ... The general constraint solving problem for sequences is even more compli-.

[image: alt]

Automated Structural Testing with PathCrawler ... - Nikolai Kosmatov

Xi'an, 27th August, 2012. Example 1. Function ... if (i + j

[image: alt]

Combinations of Static and Dynamic Analyses in ... - Nikolai Kosmatov

Jun 1, 2015 - for a long time, seen as orthogonal and used separately. â–· more recently, realization of potential synergy and complementarity. Static analysis.

[image: alt]

Combinations of Static and Dynamic Analyses in ... - Nikolai Kosmatov

Feb 11, 2016 - Basic Components. â–· First-order logic ... C types + Z (integer) and R (real). â–· Built-in Exact semantics: doesn't approximate path constraints.

[image: alt]

A Constraint Solver for Sequences and its ... - Nikolai Kosmatov

ing for sequences from the practical point of view. leads to the state with qCashier = [n1, n2, n3, n4, n5, n6], ... Logical Foundations of Computer Science.

×
Report Advanced Test Coverage Criteria: Specify and ... - Nikolai Kosmatov

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

