

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Advanced Mathematics and Mechanics Applications Using MATLAB

be comprehended without studying the details of the mathematical derivation. For our present interests it 28: nft=1024; ngph=1001; nmax=int2str(nft/2-1);. 29:.

 Télécharger le PDF

 374KB taille
 0 téléchargements
 335 vues

 commentaire

 Report

Chapter 6 Fourier Series and the Fast Fourier Transform

6.1 DeÞnitions and Computation of Fourier CoefÞcients Trigonometric series are useful to represent periodic functions. A function deÞned for −∞ < x < ∞ has a period of 2π if f (x+2π) = f (x) for all x. In most practical situations, such a function can be expressed as a complex Fourier series f (x) =

∞

c eıx where ı =

√ −1.

=−∞

The numbers c , called complex Fourier coefÞcients, are computed by integration as 2π 1 c = f (x)e−ıx dx. 2π 0 The Fourier series can also be rewritten using sines and cosines as f (x) = c0 +

∞

(c + c−) cos(x) + ı(c − c−) sin(x).

=1

Denoting a = c + c− and b = ı(c − c−) yields f (x) =

∞ 1 a0 + a cos(x) + b sin(x) 2 =1

which is called a Fourier sine-cosine expansion. This series is especially appealing when f (x) is real valued. For that case c − = c for all , which implies that c 0 must be real and a = 2 real(c) , b = −2 imag(c) for > 0. Suppose we want a Fourier series expansion for a more general function f (x) having period p instead of 2π. If we introduce a new function g(x) deÞned by

px g(x) = f 2π

© 2003 by CRC Press LLC

then g(x) has a period of 2π. Consequently, g(x) can be represented as g(x) =

∞

c eıx .

=−∞

From the fact that f (x) = g(2πx/p) we deduce that f (x) =

∞

c e2πıx/p .

=−∞

A need sometimes occurs to expand a function as a series of sine terms only, or as a series of cosine terms only. If the function is originally deÞned for 0 < x < p2 , then making f (x) = −f (p − x) for p2 < x < p gives a series involving only sine terms. Similarly, if f (x) = +f (p − x) for p2 < x < p, only cosine terms arise. Thus we get f (x) = c0 +

∞

(c + c−) cos(2πx/p) if f (x) = f (p − x),

=1

or f (x) =

∞

ı(c − c−) sin(2πx/p) if f (x) = −f (p − x).

=1

When the Fourier series of a function is approximated using a Þnite number of terms, the resulting approximating function may oscillate in regions where the actual function is discontinuous or changes rapidly. This undesirable behavior can be reduced by using a smoothing procedure described by Lanczos [60]. Use is made of Fourier series of a closely related function fˆ(x) deÞned by a local averaging process according to ∆ 1 x+ 2 ˆ f (ζ)dζ f (x) = ∆ x− ∆2 where the averaging interval ∆ should be a small fraction of the period p. Hence we write ∆ = αp with α < 1. The functions fˆ(x) and f (x) are identical as α → 0. Even for α > 0, these functions also match exactly at any point x where f (x) varies ∆ ˆ linearly between x − ∆ 2 and x + 2 . An important property of f (x) is that it agrees closely with f (x) for small α but has a Fourier series which converges more rapidly than the series for f (x). Furthermore, from its deÞnition, x+ αp ∞ ∞ 2 1 ˆ f (x) = c e2πıx/p dx = cˆ e2πıx/p αp pα x− =−∞ =−∞ 2 where cˆ0 = c0 and cˆ = c sin(πα)/(πα) for = 0. Evidently the Fourier coefÞcients of fˆ(x) are easily obtainable from those of f (x). When the series for f (x) converges slowly, using the same number of terms in the series for fˆ(x) often gives an approximation preferable to that provided by the series for f (x). This process is called smoothing.

© 2003 by CRC Press LLC

6.1.1 Trigonometric Interpolation and the Fast Fourier Transform Computing Fourier coefÞcients by numerical integration is very time consuming. Consequently, we are led to investigate alternative methods employing trigonometric polynomial interpolation through evenly spaced data. The resulting formulas are the basis of an important algorithm called the Fast Fourier Transform (FFT) . Although the Fourier coefÞcients obtained by interpolation are approximate, these coefÞcients can be computed very rapidly when the number of sample points is an integer power of 2 or a product of small primes. We will discuss next the ideas behind trigonometric polynomial interpolation among evenly spaced data values. Suppose we truncate the Fourier series and only use harmonics up to some order N . We assume f (x) has period 2π so that f (x) =

N

c eıx .

=−N

This trigonometric polynomial satisÞes f (0) = f (2π) even though the original function might actually have a Þnite discontinuity at 0 and 2π. Consequently, we may choose to use, in place of f (0), the limit as → 0 of [f () + f (2π −)]/2. It is well known that the functions e ıx satisfy an orthogonality condition for integration over the interval 0 to 2π. They also satisfy an orthogonality condition regarding summation over equally spaced data. The latter condition is useful for deriving a discretized approximation of the integral formula for the exact Fourier coefÞcients. Let us choose data points

π , 0 ≤ ≤ (2N − 1), x = N and write the simultaneous equations to make the trigonometric polynomial match the original function at the equally spaced data points. To shorten the notation we let t = eıπ/N , and write fk =

N

c tk .

=−N

Suppose we pick an arbitrary integer n in the range −N < n < N . Multiplying the last equation by t −kn and summing from k = 0 to 2N − 1 gives 2N −1

fk t−kn =

k=0

2N −1

t−kn

N

c tk .

=−N

k=0

Interchanging the summation order in the last equation yields 2N −1 k=0

© 2003 by CRC Press LLC

fk t−kn =

N =−N

c

2N −1 k=0

ζk

where ζ = eı(−n)π/N . Summing the inner geometric series gives 2N −1 1−ζ 2N for ζ = 1, k 1−ζ ζ = 2N for ζ = 1. k=0 We Þnd, for all k and n in the stated range, that ζ 2N = eı2π(k−n) = 1. Therefore we get 2N −1

fk t−kn = 2N cn , −N < n < N.

k=0

In the cases where n = ±N , the procedure just outlined only gives a relationship governing c N + c−N . Since the Þrst and last terms cannot be computed uniquely, we customarily take N large enough to discard these last two terms and write simply cn =

2N −1 1 fk t−kn , −N < n < N. 2N k=0

This formula is the basis for fast algorithms (called FFT for Fast Fourier Transform) to compute approximate Fourier coefÞcients. The periodicity of the terms depending on various powers of e ıπ/N can be utilized to greatly reduce the number of trigonometric function evaluations. The case where N equals a power of 2 is especially attractive. The mathematical development is not provided here. However, the related theory was presented by Cooley and Tukey in 1965 [21] and has been expounded in many textbooks [53, 96]. The result is a remarkably concise algorithm which can be comprehended without studying the details of the mathematical derivation. For our present interests it is important to understand how to use MATLAB’s intrinsic function for the FFT (fft). Suppose a periodic function is evaluated at a number of equidistant points ranging over one period. It is preferable for computational speed that the number of sample points should equal an integer power of two (n = 2 m). Let the function values for argument vector x = p/n ∗ (0 : n − 1) be an array f denoted by f ⇐⇒ [f1 , f2 , · · · , fn]. The function evaluation fft(f) produces an array of complex Fourier coefÞcients multiplied by n and arranged in a peculiar fashion. Let us illustrate this result for n = 8. If f = [f1 , f2 , · · · , f8] then fft(f)/8 produces c = [c0 , c1 , c2 , c3 , c∗ , c−3 , c−2 , c−1].

© 2003 by CRC Press LLC

The term denoted by c ∗ actually turns out to equal c 4 + c−4 , so it would not be used in subsequent calculations. We generalize this procedure for arbitrary n as follows. Let N = n/2 − 1. In the transformed array, elements with indices of 1, · · · , N + 1 correspond to c 0 , · · · , cN and elements with indices of n, n − 1, n − 2, · · · , N + 3 correspond to c −1 , c−2 , c−3 , · · · , c−N . It is also useful to remember that a real valued function has c −n = conj(cn). To Þx our ideas about how to evaluate a Fourier series, suppose we want to sum an approximation involving harmonics from order zero to order (nsum − 1). We are dealing with a real valued function deÞned by func with a real argument vector x. The following code expands func and sums the series for argument x using nsum terms. function fouval=fftaprox(func,period,nfft,nsum,x) fc=feval(func,period/nfft*(0:nfft-1)); fc=fft(fc)/nfft; fc(1)=fc(1)/2; w=2*pi/period*(0:nsum-1); fouval=2*real(exp(i*x(:)*w)*fc(:));

6.2 Some Applications Applications of Fourier series arise in numerous practical situations such as structural dynamics, signal analysis, solution of boundary value problems, and image processing. Three examples are given below that illustrate use of the FFT. The Þrst example calculates Bessel functions and the second problem studies forced dynamic response of a lumped mass system. The Þnal example presents a program for constructing Fourier expansions and displaying graphical results for linearly interpolated or analytically deÞned functions.

6.2.1 Using the FFT to Compute Integer Order Bessel Functions The FFT provides an efÞcient way to compute integer order Bessel functions Jn (x) which are important in various physical applications [119]. Function J n (x) can be obtained as the complex Fourier coefÞcient of e ınθ in the generating function described by ∞ eıx sin(θ) = Jn (x)eınθ . n=−∞

Orthogonality conditions imply Jn (x) =

© 2003 by CRC Press LLC

1 2π

 0

2π

eı(x sin(θ)−nθ) dθ.

Surface Plot For J (x) n

1 0.8

function value

0.6 0.4 0.2 0 −0.2 −0.4 20 15

20 15

10 10

5 order n

5 0

0

argument x

Figure 6.1: Surface Plot for J n (x)

The Fourier coefÞcients represented by J n (x) can be computed approximately with the FFT. The inÞnite series converges very rapidly because the function it represents has continuous derivatives of all Þnite orders. Of course, e ıx sin(θ) is highly oscillatory for large |x|, thereby requiring a large number of sample points in the FFT to obtain accurate results. For n < 30 and |x| < 30, a 128-point transform is adequate to give about ten digit accuracy for values of J n (x). The following code implements the above ideas and plots a surface showing how J n changes in terms of n and x.

© 2003 by CRC Press LLC

MATLAB Example Bessel Function Program plotjrun

1: 2: 3: 4: 5: 6: 7:

function plotjrun % Example: plotjrun % ~~~~~~~~~~~~~~~~~ % This program computes integer order Bessel % functions of the first kind by using the FFT. % % User m functions required: jnft

8: 9: 10: 11: 12: 13:

x=0:.5:20; n=0:20; J=jnft(n,x); surf(x,n,J’); title(’Surface Plot For J_{n}(x)’); ylabel(’order n’), xlabel(’argument x’) zlabel(’function value’), figure(gcf); print -deps plotjrun

14: 15:

%==

16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: 29: 30: 31: 32: 33: 34: 35: 36: 37: 38: 39: 40:

function J=jnft(n,z,nft) % % J=jnft(n,z,nft) % ~~~~~~~~~~~~~~~~~~~~~ % Integer order Bessel functions of the % first kind computed by use of the Fast % Fourier Transform (FFT). % % n - integer vector defining the function % orders % z - a vector of values defining the % arguments % nft - number of function evaluations used % in the FFT calculation. This value % should be an integer power of 2 and % should exceed twice the largest % component of n. When nft is omitted % from the argument list, then a value % equal to 512 is used. More accurate % values of J are computed as nft is % increased. For max(n) < 30 and % max(z) < 30, nft=256 gives about % ten digit accuracy. % J - a matrix of values for the integer

© 2003 by CRC Press LLC

41: 42: 43: 44: 45: 46: 47: 48:

% order Bessel function of the first % kind. Row position matches orders % defined by n, and column position % corresponds to arguments defined by % components of z. % % User m functions called: none. %--

49: 50: 51: 52: 53: 54: 55: 56:

if nargin 2 ah=real(s*(2*g2+s*g1+s*g2*t).*exp(s*t)); end end

260: 261:

%===

262: 263: 264:

% function y=lintrp(xd,yd,x) % See Appendix B

6.2.3 General Program to Plot Fourier Expansions The Þnal example in this chapter is a program to compute Fourier coefÞcients of general real valued functions and to display series with varying numbers of terms so that a user can see how rapidly such series converge. Since a truncated Fourier series is a continuous differentiable function, it cannot perfectly represent a discontinuous function such as a square wave. Near points where jump discontinuities occur, Fourier series approximations oscillate [18]. The same kind of behavior occurs less seriously near points of slope discontinuity. Adding more terms does not cure the problem at jump discontinuities. The behavior, known as Gibbs phenomenon, produces approximations which overshoot the function on either side of the discontinuity. Illustrations of this behavior appear below. A program was written to expand real functions of arbitrary period using Fourier series approximations computed with the FFT. A piecewise linear function can be speciÞed interactively by giving data points over a period. Alternatively, a function which is user deÞned can be employed. For instance, a function varying like a sine

© 2003 by CRC Press LLC

curve with the bottom half cut off would be function y=chopsine(x,period) y=sin(pi*x/period).*(x> fouseris FOURIER SERIES EXPANSION FOR A PIECEWISE LINEAR OR ANALYTICALLY DEFINED FUNCTION Input the period of the function ? > 4 Input the number of data points to define the function by piecewise linear interpolation (input a zero if the function is defined analytically by the user). ? > 6 Input the x,y values one pair per line ? > 0,1 ? > 1,1 ? > 1,-1 ? > 2,-1 ? > 3,1 ? > 4,0 To plot the series input xmin, xmax, and the highest harmonic not exceeding 255 (input 0,0,0 to stop) (Use a negative harmonic number to save your graph) ? > 0,4,20 To plot the series smoothed over a fraction of the period, input the smoothing fraction (give 0.0 for no smoothing). ? > 0 Press RETURN to continue To plot the series input xmin, xmax, and the highest harmonic not exceeding 255 (input 0,0,0 to stop) (Use a negative harmonic number to save your graph) ? > 0,0,0 Output for Analytically DeÞned Example >> fouseris

© 2003 by CRC Press LLC

FOURIER SERIES EXPANSION FOR A PIECEWISE LINEAR OR ANALYTICALLY DEFINED FUNCTION Input the period of the function ? > pi/2 Input the number of data points to define the function by piecewise linear interpolation (input a zero if the function is defined analytically by the user). ? > 0 Select the method used for exact function definition: 1 Use an existing function with syntax defined by the following example: function y=sine(x,period) % % y=sine(x,period) % ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ % This function specifies all or part of % a sine wave. % % x - vector of argument values % period - period of the function % y - vector of function values % % User m functions called: none %---y=sin(rem(x,period)); or 2 Use a one-line character string definition involving argument x and period p. For example a sine wave with the bottom cut off would be defined by: sin(x*2*pi/p).*(x 1 Enter the name of your function ? > sine To plot the series input xmin, xmax, and the highest harmonic not exceeding 255 (input 0,0,0 to stop)

© 2003 by CRC Press LLC

(Use a negative harmonic number to save your graph) ? > 0,pi,-20 To plot the series smoothed over a fraction of the period, input the smoothing fraction (give 0.0 for no smoothing). ? > 0 Give a file name to save the current graph > exactplt Press RETURN to continue To plot the series input xmin, xmax, and the highest harmonic not exceeding 255 (input 0,0,0 to stop) (Use a negative harmonic number to save your graph) ? > 0,0,0 Fourier Series Program fouseris

1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23:

function fouseris % Example: fouseris % ~~~~~~~~~~~~~~~~~ % This program illustrates the convergence rate % of Fourier series approximations derived by % applying the FFT to a general function which % may be specified either by piecewise linear % interpolation in a data table or by % analytical definition in a function given by % the user. The linear interpolation model % permits inclusion of jump discontinuities. % Series having varying numbers of terms can % be graphed to demonstrate Gibbs phenomenon % and to show how well the truncated Fourier % series represents the original function. % Provision is made to plot the Fourier series % of the original function or a smoothed % function derived by averaging the original % function over an arbitrary fraction of the % total period. % % User m functions required: % fousum, lintrp, inputv, sine

© 2003 by CRC Press LLC

24: 25: 26: 27: 28:

% The following parameters control the number % of fft points used and the number of points % used for graphing. nft=1024; ngph=1001; nmax=int2str(nft/2-1);

29: 30: 31: 32: 33:

fprintf(’\nFOURIER SERIES EXPANSION FOR’); fprintf(’ A PIECEWISE LINEAR OR’); fprintf(’\n ANALYTICALLY DEFINED ’); fprintf(’FUNCTION\n’);

34: 35: 36: 37: 38: 39: 40: 41: 42: 43: 44: 45: 46: 47:

fprintf(’\nInput the period of the function\n’); period=input(’? > ’); xfc=(period/nft)*(0:nft-1)’; fprintf(’\nHow many points define the function’); fprintf(’\nby piecewise linear interpolation?’); fprintf(’\n(Give a zero for analytical definition)\n’) nd=input(’> ? ’); if nd > 0, xd=zeros(nd,1); yd=xd; fprintf(’\nInput the x,y values one ’); fprintf(’pair per line\n’); for j=1:nd [xd(j),yd(j)]=inputv(’> ? ’); end

48: 49: 50: 51: 52: 53: 54: 55: 56: 57: 58: 59: 60: 61: 62: 63: 64: 65: 66: 67: 68:

% Use nft interpolated data points to % compute the fft yfc=lintrp(xd,yd,xfc); c=fft(yfc); else fprintf(’\nSelect the method for ’); fprintf(’analytical function definition:\n’); fprintf(’\n1 Use an existing function ’); fprintf(’with syntax of the form:’); fprintf(’\nfunction y=funct(x,period), or \n’); fprintf([’\n2 Give a character string ’,... ’in argument x and period p.’]) fprintf([’\n(Such as: sign(sin(2*pi*x/p)) ’... ’to make a square wave)\n’]) nopt=input(’Enter 1 or 2 ? > ’); if nopt == 1 fprintf(’\nEnter the name of your ’); fprintf(’function\n’); fnam=input(’> ? ’,’s’); yfc=feval(fnam,xfc,period); c=fft(yfc); else

© 2003 by CRC Press LLC

69: 70: 71: 72: 73: 74: 75:

fprintf(’\nInput the one-line definition’); fprintf(’ in terms of x and p\n’); strng=input(’> ? ’,’s’); x=xfc; p=period; yfc=eval(strng); c=fft(yfc); end end

76: 77: 78: 79: 80: 81: 82: 83: 84: 85: 86: 87: 88: 89: 90: 91: 92: 93: 94: 95: 96: 97: 98: 99: 100: 101: 102: 103: 104: 105: 106: 107: 108: 109: 110: 111: 112: 113:

while 1 fprintf(’\nTo plot the series input xmin,’); fprintf(’ xmax, and the highest’); fprintf([’\nharmonic not exceeding ’, ... nmax,’ (press [Enter] to stop)’]); fprintf(’\n(Use a negative harmonic number’); fprintf(’ to save your graph)\n’); [xl,xu,nh]=inputv(’> ? ’); if isnan(xl), break; end pltsav=(nh < 0); nh=abs(nh); xtmp=xl+((xu-xl)/ngph)*(0:ngph); fprintf(’\nTo plot the series smoothed ’); fprintf(’over a fraction of the’); fprintf(’\nperiod, input the smoothing ’); fprintf(’fraction’); fprintf(’\n(give 0.0 for no smoothing).\n’); alpha=input(’> ? ’); yfou=fousum(c,xtmp,period,nh,alpha); xxtmp=xtmp; idneg=find(xtmp0 yexac=lintrp(xd,yd,rem(xxtmp,period)); else if nopt == 1 yexac=feval(fnam,xtmp,period); else x=xxtmp; yexac=eval(strng); end end in=int2str(nh); if alpha == 0 titl=[’Fourier Series for Harmonics ’ ... ’up to Order ’,in]; else titl=[’Smoothed Fourier Series for ’ ...

© 2003 by CRC Press LLC

114: 115: 116: 117: 118: 119: 120: 121: 122: 123: 124: 125: 126: 127: 128: 129:

’Harmonics up to Order ’,in]; end clf; plot(xtmp,yfou,’-’,xtmp,yexac,’--’); ylabel(’y axis’); xlabel(’x axis’); zoom on title(titl); grid on; figure(gcf); disp(’ ’); disp(’You can zoom in with the mouse button.’) input(’You can press [Enter] to continue. ’,’s’); if pltsav disp(’ ’) filnam=input([’Give a file name to ’ ... ’save the current graph > ? ’],’s’); if length(filnam) > 0 eval([’print -deps ’,filnam]); end end end

130: 131:

%===

132: 133: 134: 135: 136: 137: 138: 139: 140:

function y=sine(x,period) % y=sine(x,period) % ~~~~~~~~~~~~~~~~ % Function for all or part of a sine wave. % x,period - vector argument and period % y - function value % y=sin(rem(x,period));

141: 142:

%===

143: 144: 145: 146: 147: 148: 149: 150: 151: 152: 153: 154: 155: 156: 157: 158:

function yreal=fousum(c,x,period,k,alpha) % % yreal = fousum(c,x,period,k,alpha) % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % Sum the Fourier series of a real % valued function. % % x - The vector of real values at % which the series is evaluated. % c - A vector of length n containing % Fourier coefficients output by % the fft function % period - The period of the function % k - The highest harmonic used in % the Fourier sum. This must

© 2003 by CRC Press LLC

159: 160: 161: 162: 163: 164: 165: 166: 167: 168: 169: 170: 171: 172: 173: 174: 175: 176: 177: 178: 179: 180: 181: 182: 183: 184: 185:

% not exceed n/2-1 % alpha - If this parameter is nonzero, % the Fourier coefficients are % replaced by those of a function % obtained by averaging the % original function over alpha % times the period % yreal - The real valued Fourier sum % for argument x % % The Fourier coefficients c must have been % computed using the fft function which % transforms the vector [y(1),...,y(n)] into % an array of complex Fourier coefficients % which have been multiplied by n and are % arranged in the order: % % [c(0),c(1),...,c(n/2-1),c(n/2), % c(-n/2+1),...,c(-1)]. % % The coefficient c(n/2) cannot be used % since it is actually the sum of c(n/2) and % c(-n/2). For a particular value of n, the % highest usable harmonic is n/2-1. % % User m functions called: none %--

186: 187: 188: 189: 190: 191: 192: 193: 194: 195: 196: 197: 198: 199:

x=x(:); n=length(c); if nargin

des documents recommandant

[image: alt]

Advanced Mathematics and Mechanics Applications Using MATLAB

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are ingly attractive to the entire technical community.

[image: alt]

Advanced Mathematics and Mechanics Applications Using

ate engineering courses. However, simple analyses presented in standard 72: N1=36; N2=72; N3=36;. 73: x1=linspace(0, 36,N1); y1=(x1-h1).^2/a+k;. 74:.

[image: alt]

Advanced Mathematics and Mechanics Applications Usingfr

Numerical integration methods approximate a definite integral by evaluating the integrand at several points and taking a weighted combination of those ...

[image: alt]

Advanced Mathematics and Mechanics Applications Usingfr

The mass matrix, M, the damping matrix, C, and the stiffness matrix,. K, are all real. A more accurate formula with truncation error of order h. 5 can be ...

[image: alt]

Advanced Mathematics and Mechanics Applications Using

LAB using a spline. finitdif. 4. Program to static equilibrium of a loaded cable. brachist. 13. Program to Simulation, 52(4):141 149, 1989. [17] B. Char, K.

[image: alt]

Advanced Mathematics and Mechanics Applications Using

where the superscript d indicates a finite difference result. The ratio of the Consequently for Cases III and IV the governing equation is. EIm (x) + Pm(x)=0.

[image: alt]

Advanced Mathematics and Mechanics Applications Using

to such problems is known as linear programming [41] and applications able linear equations, the general situation yields nonlinear equations, and a min4 An elementary way to analyze the proximity of two surfaces is to describe each.

[image: alt]

Advanced Mathematics and Mechanics Applications Using

Next we study three types of one4dimensional interpolation: polynomial, piece4 wise linear, and cubic spline. and the third derivative values (relating to internal shear forces in beam analysis) Figure 4.2: Spline Curve Drawing the Word M

[image: alt]

Advanced Mathematics and Mechanics Applications Usingfr

The Cauchy integral formula provides a simple means for computing F(z) at interior function is easy to invert by solving a quadratic equation to give Î¶ = z +. âˆš.

[image: alt]

Advanced Mathematics and Mechanics Applications Usingfr

The physical applications vary widely from solution of linear and nonlinear ... 1.2 MATLAB Commands and Related Reference Materials. MATLAB ... The manual for The Student Edition of MATLAB should be read thoroughly and kept handy for ...

[image: alt]

Advanced Mathematics and Mechanics Applications Using

assume responsibility for the validity of all materials or for the consequences of their ... Our MATLAB solutions consume over three hundred pages (over twelve ...

[image: alt]

Advanced Mathematics and Mechanics Applications Using

fact, good engineering analysis depends critically on development of reliable mod4 els which can ... alyzing engineering systems. 25: n1=ncal; ncal=0;. 26:.

[image: alt]

Advanced Mathematics and Mechanics Applications Using

Solutions to such problems are seldom obtainable in a closed finite form. Even when ... struct a solution for boundary values represented by piecewise linear interpolation. Surface beamresp converts material property data to dimension4.

[image: alt]

Advanced Mathematics and Mechanics Applications Usingfr

rest with zero deection when forcing functions are applied which nearly resonate with the fourth eigenvalue of the damped homogeneous system. This example ...

[image: alt]

Mathematics, Computer Science and Mechanics faculties of

resource (person, event-types), email notification, Html month/week/day view â€¦ ... to export them into a PDF/Html file is practical since the card can be sent via ...

[image: alt]

Applications in Fluid Mechanics

In a one-dimensional case, the velocity gradient and Newton's law of vis- ... is not necessarily as straightforward as in heat transfer and (as shown in Chap-.

[image: alt]

Quantum Key Distribution Protocols and Applications - Mathematics

8 mars 2011 - Security at Royal Holloway, University of London. So, it is the very act of observation that destroys the wave function and determines the.

[image: alt]

Advanced Operating Systems and Kernel Applications

One of existing most effective solutions to ameliorate the bottleÂ¬neck is principles, if instructions or data have been loaded into the against software engineering rules. A code derstanding the Linux Kernel (2nd Ed). exampl

[image: alt]

Applications in Solid Mechanics - Description

a single coordinate axis is required to define the element reference frame, hence, the stiffness ... In the shear stress-strain relation, the shear modulus G = E/2(1 +) has been introduced. ... potential energy in following developments. ... where [

[image: alt]

Using Advanced Tape Services

This document contains information which is protected by copyright. All rights are reserved. ... product and replacement parts can be obtained from your local Sales and. Service Office. Description: Tape library systems group. Type: NODE_N

[image: alt]

Circuit Analysis II with MATLAB Applications

1-16. Circuit Analysis II with MATLAB Applications. Orchard Publications The subscript stands for line. Figure 4.2. Waveform for Example 4.13. A a t. 0. fP t.

[image: alt]

Circuit Analysis II with MATLAB Applications

It encompasses a spectrum of subjects ranging from the most abstract to the most practical ... that were discussed in the last chapter of as Circuit Analysis I with MATLABÂ® Applications. Chapter 2 Selectivity curves with different values of R

[image: alt]

MATHEMATICS MM03 Unit Mechanics 3 - Douis.net

Jun 11, 2007 - eed of (2.38) Speed of (0.6) collides again with. B. A. B. A. âˆ´. X. M1A1. M1. A1 m1. A1F. M1. A1F. E1. 6. 3. For both (1) and (2). Dependent on ...

[image: alt]

MATHEMATICS MM03 Unit Mechanics 3 - Douis.net

Jun 11, 2007 - Use blue or black ink or ball-point pen. Pencil should only be used for drawing. â€¢. Write the information required on the front of your answer ...

×
Report Advanced Mathematics and Mechanics Applications Using MATLAB

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

