Acoustic Attenuation in Silica in the 100-250 GHz ... - Simon Ayrinhac

u.a . 300nm. 600nm. 900nm. Patrick EMERY1, Arnaud DEVOS2, Simon AYRINHAC3, ... 5 H. –N. Lin, R. J. Stoner, H. J. Maris, and J. Tauc, JAP 69, 3816 (1991).
239KB taille 2 téléchargements 147 vues
Acoustic Attenuation in Silica in the 100-250 GHz Range Using Colored Picosecond Ultrasonics Patrick EMERY1, Arnaud DEVOS2, Simon AYRINHAC3, Marie FORET3, Benoît RUFFLE3 1 ST

Microelectronics, 850 rue Jean Monnet, 38920 CROLLES

2 Institut 3

d’Electronique, de Microélectronique et de Nanotechnologies, Cité Scientifique - Avenue Poincaré, BP 60069 59652 Villeneuve d'Ascq Cedex

Laboratoire des Colloïdes, Verres et Nanomatériaux - UMR 5587 CNRS-UM2 MONTPELLIER Attenuation in the hypersonic range

Abstract We report on new measurements of the attenuation of longitudinal acoustic waves in vitreous silica using picosecond ultrasonics. We present a new way of using this ultrafast technique which overcomes the difficulties encountered in the pioneering work of H. J. Maris. [P. Emery, A. Devos, Applied Physics Letters 89, 191904 (2006)]

Picosecond Ultrasonics

Ultrafast technique based on a pump-probe scheme that enables non destructive mechanical measurements on µm to nm scale stacks Acoustic pulse

probe

Any materials[4] :

Transparent materials[5] :

Comparison between the Fourier transform of the successive ehoes

Analysis of the damping of the Brillouin oscillation

• A high impedance contrast is needed to produce several echoes,

• Needs thick sample to reveal the low frequency oscillation and the attenuation effect

• Reflections at the free surface can affect the result

pump

Substrate ∆ R/R (u.a.)

Thin film Ex: W e=163nm

The given example illustrates the classical Picosecond ultrasonic technique to measure acoustic attenuation 4 C. Thomsen, H. T. Grahn, H. J. Maris, J. Tauc, Phys. Rev. B 34, 6, p4129 (1986) Time (ps)

5 H. –N. Lin, R. J. Stoner, H. J. Maris, and J. Tauc, JAP 69, 3816 (1991)

Protocol description and Experimental results Definition : The protocol enables attenuation measurements in thin films. We measure α, defined by: Along the distance z, the acoustic energy is attenuated by a factor e-αz at a given frequency[6]

Al

Samples configuration Si

Si

Dielectric (SiO2)

In some cases attenuation has to be measured in thin films deposited on a substrate with a low impedance contrast :

The probed frequency depends on the material characteristics[7]

0.03

300nm 600nm 900nm 1200nm

0.02

Al/SiO2/Si ∆R/R (unités arb.)

No impedance mismatch • 1 weak echo !!

DR/R (a.u.) .

In thin films, high frequencies are needed to be sensitive to the attenuation effect on small distances ~ a few 100 nm

Classical technique :

fSiO2 = 40 GHz (negligible)

λsonde=804 nm

0 0

50

100

150

200

-0.02

Wavelength protocol :

Time delay (ps) -0.03

2 frequencies come out 600nm 900nm

50

100

150

u.a.

• 240 GHz (travelling in Silicon) 0

Superimposition of experimental results obtained on 4 thicknesses of SiO2 (300, 600, 900, 1200nm) probed at 400nm

300nm

• 40 GHz (travelling in Silica)

λsonde=402 nm

Results :

200

TimeTemps delay (ps) 0

v Probe interferences

0.2 f (THz)

0.4

0.6

0.8

1

measured energy attenuation at 236 GHz in v–SiO2 (LPCVD sample) α = 5,1 ± 0,9 .10-3 nm-1

6 P. Emery, A. Devos, Appl. Phys. Lett. 89, 191904 (2006) 7 A. Devos, R. Côte, G. Caruyer and A. Lefèvre, Appl. Phys. Lett. 86, 211903 (2005)

Strain pulse Fourier components after different propagation distances assuming a f² dependent attenuation coefficient

Oscillations

(corresponding to β=1.16 ± 0,2.10-3 nm-1.THz-2 strain field)

Wide band results : Using different probe wavelengths and substrates, the protocol can provide attenuation measurements in the hypersonic frequency range

2nv cos θ

f =

Results :

Use of different wavelengths Si Brillouin at different probe wavelengths

Fréquence sondée en fonction du substrat utilisé 3.5

SiO2 (1000nm) sur GaP SIO2 (900nm) sur Si

λ=430 nm

2.5 2

f = 192 GHz

1.5

178 GHz

DR/R (u.a.) .

3 .

frequency dependence of LA attenuation in v–SiO2 at 300 K

λ

Use of different substrates

DR/R (u.a.)

250

-0.01

fSi = 240 GHz (measurable)

Echo

0.01

193 GHz

218 GHz

231 GHz

390 nm 400 nm 410 nm 430 nm 450 nm

1 250 GHz

0.5

f = 108 GHz

0 0

50

100

t (ps)

150

200

250

100

110

300

130

140

150

t (ps)

760 to 900 nm Achievable frequency range :

120

380 to 450 nm

GaP

GaP

Si GHz

0

50

100

150

200

250

Conclusion • We measured a LA attenuation for v–SiO2 two times lower than that found in the pioneering work of H.J.Maris [Zhu et al PRB 44 4281 (1991)]. • Our results seems to be in line with a quadratic frequency dependence of attenuation up to 250 GHz.