

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

achieving technical architecture with architectural

between the theory and practice of software architecture, particularly due to the ... competitive by coupling technical advances with business requirements.

 Télécharger le PDF

 90KB taille
 2 téléchargements
 324 vues

 commentaire

 Report

ACHIEVING TECHNICAL ARCHITECTURE WITH ARCHITECTURAL FIGURES Hai-Quan NGUYEN (+,*), Laurence DUCHIEN (*), Philippe BEDU (+), Jean PERRIN(+), (*) Université des Sciences et Technologies de Lille (USTL) Laboratoire d’Informatique Fondamentale de Lille (LIFL) 59655-Villeneuve d'Ascq Cedex, France (+) Electricité de France (EDF) - Research Division, 1, avenue du Général de Gaulle 92141- Clamart Cedex, France , , ,

ABSTRACT Specifying a technical architecture is a very complex task, especially when non functional requirements such as performance, interoperability, Quality of Service (QoS), or efficiency have to be considered. There is a large gap between the theory and practice of software architecture, particularly due to the scarcity of methods helping to turn a functional architecture into a technical architecture. Moreover, architects need tools not only to describe the architecture but also to analyze and to verify qualities of architecture. This paper presents the first step of an expe riment carried out with EDF-R&D (Electricité de France Group). The aim is to define an architectural reusable structure named “architectural figure”. These kinds of tools are essential while constructing the specification of a technical architecture (Engineering viewpoint in RM-ODP) by refining the functional architecture (Computational viewpoint in RM-ODP). A description model for these figures and some examples are proposed in this paper.

KEY WORDS Reuse, RM-ODP, distributed technical architecture, ADLs, quality attributes, architectural figure.

1. INTRODUCTION In recent years, number of significant works was realized in software architecture fields. There is large agreement on the great benefits of software architecture [7, 8, 19] in the comprehension, reuse, construction, evolution, analyze and management of software systems. Firms today believe in the ability to keep business competitive by coupling technical advances with business

requirements. This means that they are expecting wellformed software, especially distributed software, which behaves as intended with more and more non-functional qualities. Thus, analyzing and reasoning on qualities of software architecture is one of the new challenges for IT architects. Translating the required qualities into some architecture models is one way to overcome such challenges and reach our goals in a timely manner. A functional architecture focuses on the decomposition of a system into components that interact at interfaces and on the constraints on the actions of the components as well as their interactions. This decomposition specification will address the system in terms of computational components configuration and interactions necessary to achieve the complete functionality of the system. This decomposition does not consider quality requirements such as performance, security, interoperability or reuse. These quality requirements have to be taken into account when specifying the operational architecture. This step is all the more important since the infrastructure must be defined in a distributed environment. Whereas, no method or guideline exists for helping the translation from a behavioral architecture into a technical architecture. In this paper, we present our experiments in collaboration with EDF R&D (Electricity de France Group) to specify operational architecture from functional architecture and to consider qualities requirements. We propose architectural figures to help architects in their technical decisions. In this paper, we first outline existing work related to concept exposed above. Next, we introduce a new concept of architectural figure model and we describe some figure instances. Finally, we conclude giving some perspectives and guidelines for future improvement of this approach.

2. RELATED WORK 2.1 Architectural Models Over the last years, several architectural models have emerged in an attempt to establish engineering principles for building architecture software. The majority of those models are based on the separation of concerns in the stakeholders. For example, Kruchten‘s “4+1” views [14] divides software concerns in five viewpoints: logic, process, physic, deployment, and use cases. Hofmeister and al. [9] relies on four different viewpoints: conceptual, module, code and execution. The ISO standard for architectural specification RM-ODP (Reference Model for Open Distributed Processing) [12, 18] separates the concerns of stakeholders into five viewpoints fit to organization problems: Enterprise, Information, Computation, Engineering, and Technology. In order to make a consensus between these architectural concepts, IEEE aims to standardize a meta-model for all these concepts [10]. All those models come with the idea that different viewpoints have to be identified to encompass the different areas of concerns that need to be covered when one develops a system. Finally, those models establish a coordinated set of models, each aimed at capturing one facet of the design, satisfying the requirements that are the concern of some particular group involved in the architecture specification process. But, designing software architecture is largely a modeling activity and a reference model such as RMODP does not express how to reach a complete architecture specification and how to realize the transition between the different viewpoints. Here, one of the most critical questions concerns the consistency of definitions between the different viewpoints and the potential transformations that can be performed between those viewpoints in order to achieve the final specification.

2.2 Architecture Description Languages (ADLs) Specifying software architecture requires an architectural language to define all static and dynamic aspects of architecture. These languages define the formalism in terms of component, connector, and configuration. In an ADL, a component is a software entity that logically gathers several functionalities. The component specification typically includes provides and requires clauses (i.e. the provided and the required services). To cover different paradigms of interconnection, ADLs come up with the connector abstraction, thus allowing different types of connectors (e.g. pipes, RPC, events) to coexist in

an architecture. The connector expresses interactions in a well-specified way. It isolates the interaction definition between components. By this way, the interaction semantics and non functional concepts such as security or transactional may be specified. Finally, connectors and components assembling define a system configuratio n. A configuration provides constraints definitions on the composition. This clear separation between components, connectors and configuration is a basic concept shared by all ADLs. However, despite a large popularity among the research community, no ADLs have yet reached common practice in companies. However, several ADLs have been introduced like ACME, ArchJava, Aesop, C2, Darwin, Meta-H, Olan, Rapide, SADL, UniCon, Weaves, Wright, or xADL. Medvidovic and Taylor [17] provide a general framework to clas sify and compare them. In our context, we want to specify static and dynamic architecture properties, but also express architectural qualities and architectural reuses. Some of the cited ADLs as Darwin [16] or ArchJava [1] define dynamic properties of a configuration, but only Wright [2] provides means to define some non functional requirements.

2.3 Non functional requirements For software architects, the main objective is not only to ensure the application functionality, but also to satisfy some software qualities. Defining a good architecture requires some architectural solutions for the design and architectural evaluations based on quantitative and qualitative terms. ISO proposes a standard in software quality, named ISO/IEC 9126 [11]. The ISO/IEC view is derived from ISO 8402 (Quality vocabulary) definition of quality: A quality is the totality of characteristics of an entity that bear on its ability to satisfy stated and implied needs. Quality attributes defines in [11] can be classified in two families. First, the quantitative qualities are functionality, reliability, efficiency qualities. For example, a reliability quality requirement can be resolved by replication servers in a distributed environment. Secondly, software qualitative qualities are usability, maintainability, and portability. Moreover, in distributed environment, we can add the QoS (Quality of Service) as an additional attribute of qualitative quality. These non functional requirements must be consider in the translation between the functional architecture and the technical architecture. So, architects use their experiences and informal or ad hoc approaches to build technical architectures.

3. ARCHITECTURAL FIGURES 3.1 Our context EDF company uses RM-ODP standard [12] to specify software architectures of diverse Information Systems. For example, EDF describes some distributed calculus systems, large customer relationship applications or realtime systems in production applications. The main standard benefit lies in the rich concepts it provides to support distributed and various architectures. RM-ODP defines five viewpoints. Enterprise viewpoint expresses the requirements of organization. Information viewpoint describes necessary information for the application. Computational vi ewpoint defines functionalities of system in terms of objects and their interfaces. Engineering viewpoint specifies the abstract structure in a distributed environment. Finally the technology viewpoint describes the technology choice for the architecture. RM-ODP is an informal model. No explicit method for using or applying it is provided in order to define architecture description languages. Then, EDF is working on an iterative method of specification called DASIBAO [6] that defines meta-models in UML to represent each point of view and different mapping models between them. The aim of the DASIBAO method is to help architects in the different steps of the architecture definition. Meta-models will be used to define an ADL in each viewpoint and the mapping models will ensure cohesion and continuity in the method. The functional architecture is the computational viewpoint result in RM-ODP. The technical architecture is the Engineering viewpoint representation. For the moment, the mapping model between them stays in the intuitive domain or must take root in the architect’s experience. In a functional architecture, the interactions are at the functional level without links with their implementation in a distributed environment. The component implementations on several nodes and the using of technical services as naming or security services are not automated. b

Figure 1: Mapping from a functional architecture to a technical architecture in the reference model ODP

The technical architecture definition may consider the functional architecture and a set of non functional requirements about software qualities. So, to help architects in the mapping between both viewpoints, we define the concept of architectural figure (see Figure 1).

3.2 Architectural figure definition Definition The concept of architectural figure describes some structuring principles in a distributed environment with considerations of software quality requirements. An architectural figure is thus a translation model of a set of components and their interactions from a functional level to a technical level. An architectural figure is a generic assembling of components that can be applied to a technical architecture. The choice of an architectural figure is made from non functional requirements. For this purpose, an architectural figure description comes with attributes of quality in order to classify the figure according the values of attributes. In the RM-ODP Computational viewpoint, a functional specification addresses the systems in terms of configuration of computational objects and interactions necessary to achieve the complete functionality of the system. We find in this viewpoint three kinds of interactions: client/server, producer/consumer, and event signal. As regards the technical architecture, these interactions will be mapped on execution model with communication mode such as remote invocation method, message mode, mobile communication, communication by events with publish/subscribe primitives, or data sharing mode. So the architectural figure will adapt the functional interactions in technical interactions in accordance with execution models. The description model of an architectural figure is composed of: •

A language to define the set of components and their interactions. Some component s are described by a functional role, but others have a technical role. The figure specifies components and interactions assembling in a static way, but also a dynamic way. The static approach defines components with their provided and required interfaces and the connectors that are interaction abstractions. With the dynamic approach, the architectural figure behavior is described. For example, interaction running is defined. We also add a pragmatic aspe ct in the dynamic approach to consider the distributed environment. In this part, we consider non functional properties in adequacy with the quality attributes.

•

A language to define the set of rules to deploy and instantiate components. These rules determine the

place of the various entities of architecture on the network. They are in touch with quality attributes and they are deduced from the technical architecture. •

A language to define the set of quality attributes that the figure is supposed to satisfy.

•

Several technical models such as state machines or temporal logic for reasoning about some properties of a figure.

client/server figure contains stub and skeleton, binding and protocol components. These components will be deployed on different nodes, each set of stub, binder and protocol is on one node. This figure may be defined in our architectural figure language and then is applied to the technical architecture.

With this framework, a repository needs to store and manipulate figures. This repository contains figure descriptions and their quality attributes. It is a catalogue to help in architecture choices. In short, the description model of a figure defines components and their assembling in a syntactic and semantics way with static and dynamic aspects. We also add a description model of quality attributes to easiness choice. Finally we propose to associate several technical models to express and verify properties of a figure.

Figure 3: Interaction client/server figure

3.3 Some Figure examples In this section, we briefly give some architectural figures with their quality attributes. We decline the client/server model in several architectural figures. Due to the lack of space, we only draw an intuitive representation of figures and architectures. We do not explain in details our languages. Figure 4: Technical architecture

Client-Server architectural figure In distributed environment, the client -sever figure is most important and remains the most widely used. It corresponds to a basic interaction. Figure 2 describes a simple structure in which client processes interact with server processes. Each role (client or server) will be on separate host computers. Servers may become client of others servers. No particular quality attribute fits with this architectural figure . An example is the DNS service that translates Internet Domain Names to network addresses. Most of Internet services are clients of a DNS server.

Client -multiple servers architectural figure A service may be realized by several server processes in separate host computers interacting as necessary to provide a service to a client processes (Figure 5). From functional point of view, the service is only one entity. From technical point of view, the service is associated to a set of servers. These servers may partition a set of objects and distribute them between themselves or they may maintain replicated copies of them on several hosts.

Figure 2: Client/Server functional architecture example

Figure 5: Client-multiple servers functional architecture

Translating a functional architecture in a technical architecture with a client/server figure is simple until only distribution is required. We apply a remote synchronous interaction figure between client and server such described in Figure 3 and we obtain a technical architecture (Figure 4). In Figure 3, an interaction

The figure that can be applied contains a replication object that manages relationship between different servers. The replication policy depends on defined quality attributes. The associated quality attributes are reliability when existing several copies or efficiency when

partitioning copies. Properties that can be proved are reliability or the reduction of the load rate.

Figure 8: A simple cache figure

Figure 6: A simple replication figure with replication manager components (rm)

In this architecture (Figure 9), the figure is applied in a separate node, but it could be applied in the client side or in the server side.

Figure 9: An example of a technical architecture with a cache figure

3.4 Style, pattern, and figure Figure 7: Client-multiple servers technical architecture The DNS example may be extended. The functional architecture remains a client-server model, but in order to offer an efficient architecture, architects may add a data partition model. Moreover, in each domain, naming base is replicated to ensure a reliability quality. So two instances of client/multiple servers architectural figure can be applied, the first one for reliability, the second one for efficiency. Cache server architectural figure A cache is a fast access storage of recently used information. When new information is received by a process, it is added to the cache store, replacing older information if needed. When information is requested by a process client, the caching service first checks the cache store. If information is present, it is retrieved from the cache else the normal access is applied. Cache storage may be collocated with clients or in a proxy server shared by all clients. In this figure, the quality attribute is also efficiency due to reduction of message exchanged on the network. This reduction can be measured. The DNS example may be then enhanced. This figure may be applied to each naming server.

The concept of architectural style appears in Perry and Wolf’s work [19] and is developed by Shaw and Garlan [20]. An architecture style is a description of generic components and their assembling. A style defines an assembling scheme by precisely defining data exchange and control sequences between components. An architectural pattern [4] expresses a fundamental structural organization scheme for software systems. It provides a set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organizing the relationship between them. Both offer generic assembling structure and make easier component reuse, but their definitions are not at the same level. Patterns propose a structural organization scheme of the application. It is defined in accordance with the application domain. It is more detailed in its operations. An architectural style is more general and is not necessarily associated to an application domain. None of both considers non functional requirements and the translation between functional and technical architectures. In [15] the authors, based on the industrial case studies, show that there are the conflicts between the pairs of quality attributes. They present then the guideline s to ensure non functional requirements. Our work, in the

contrary, aims to provide the formal structures that satisfy the non functional qualities. Quality design primitives [3] are another work about conceptual architectural design. They extend their previous works on ABAS [13] and they solve the non functional problems like performance, security, modification in the architectural analysis. Nevertheless, although this work improves the architectural decisions, it does not show precisely any methodology for the development of technical architectur e from a functional architecture. Moreover, the quality analysis is based on ATAM [5] that essentially works on the expertise summed-up on scenario. In another way, our ambition is to formalize the analysis of the architectural qualities.

4. CONCLUSION AN D FUTURE WORK This work is definitely early work in progress. We place our work in the context of RM-ODP. Our goal is to integrate quality attributes in the architecture choice process and propose some helps for jumping the gap between the functional architecture and the technical architecture of a distributed application. We propose a new concept called architectural figure inspired by previous works on the reuse of the architectural structures, such as architectural patterns and architectural styles. Th is approach may be tested in EDF applications. These various aspects need to be integrated in an environment of architecture design accompanied together with architectural tools such as the analyzing and verification tools. Next steps of this work include the complete definition of languages for describing figures, deployments and quality attributes and the implementation of a referential of figures. We also plan to use formal languages to analyze quality aspects of technical architectures.

REFERENCES [1] J. Aldrich, C. Chambers, D. Notkin, Architectural reasoning in Archjava, Proceedings of the European Conference on Object-Oriented Programming, June 2002. [2] R. Allen, A formal approach to software architecture, PhD thesis, School of Computer Science Carnegie Mellon University, Pittsburgh, May 1997. [3] Bass, Len; Klein, Mark; & Bachmann, Felix. Quality attribute design primitives (CMU/SEI-2000-TN-017, ADA 392284). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2000. [4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal Pattern oriented software architecture - A system of patterns , , Chichester, UK, John Wiley and Sons Ltd, 1996 .

[5] P. Clements, R. Kazman, M. Klein, Evaluating software architectures: methods and case studies, USA, Addison-Wesley, 2001. [6] Groupe de travail « Architectures », DASIBAO: Démarche d’Architecture des Systèmes d’Information BAsée sur ODP, EDF R&D Report, March 2002. [7] D. Garlan, Software Architecture, Wiley Encyclopedia of Software Engineering , J. Marciniak (Ed.), John Wiley & Sons, 2001. [8] D. Garlan and D.E. Perry, Introduction to the Special Issue on Software Architecture, IEEE Transactions on Software Engineering, 21 (4), April 1995, pp 269-274. [9] C. Hofmeister, R. L. Nord, and D. Soni, Describing software architectures with UML, In P. Donohoe, editor, Proceedings of the First Working IFIP Conference on Software Architecture, pages 145-160, Kluwer Academic Publishers, 1999. [10] Recommended Practice for Description, IEEE Standard P1471, 2000.

Architectural

[11] ISO/IEC, Software product evaluation - Quality characteristics and guidelines for their use, 1991. [12] ISO/IEC. Open Distributed Processing Reference Model - parts 1,2,3,4 ISO 10746 or ITU -T X.901,2,3,4 1995. [13] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson. Attribute-Based Architecture Styles. Proceedings of the First Working IFIP Conference on Software Architecture (WICSA1), San Antonio, TX, pp 225-243, (February 1999). [14] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(5):42--50, November 1995. [15] Lars Lundberg, Jan Bosch, Daniel Häggander and Per-Olof Bengtsson, Quality Attributes in Software Architecture Design, Proceedings of the IASTED 3rd International Conference on Software Engineering and Applications , pp. 353-362, October 1999. [16] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying Distributed Software Architectures, Proceedings of Fifth European Software Eng. Conf. (ESEC '95), Sept. 1995. [17] N. Medvidovic and R. Taylor. A Classification and Comparison Framework for Software Architecture Description Languages, IEEE Transactions on Software Engineering , January 2000. [18] J.R. Putman, Architecting with RM-ODP, PrenticeHall, 2001. [19] D. E. Perry and A. L. Wolf, Foundations for the study of software architecture. ACM SIGSOFT Software Engineering Notes , 17:40--52, October 19 92. [20] M. Shaw, D. Garlan, Software Architecture Perspectives on an Emerging Discipline , Prentice Hall, 1996.

des documents recommandant

[image: alt]

achieving technical architecture with architectural

Moreover, architects need tools not only to describe the architecture but also to ... These kinds of tools are essential and informal or ad hoc approaches to build technical architectures. BAsÃ©e sur ODP, EDF R&D Report, March 2002.

[image: alt]

projet urbain et architectural architecture de royan

Save As PDF Ebook projet urbain et architectural architecture de royan ecovillage cite ideale 1950 brasilia atlantropa meridienne today. And You can Read ...

[image: alt]

Architectural

Longueur 2. 13 9â�„16. 345 beige carbonifÃ¨re gris calcaire beige mojave gris champlain noir onyx moisson d'or brun chÃ¢taigne brun chocolat rouge d'automne.

[image: alt]

Architectural

colle Ã bÃ©ton, afin de les rendre plus stables et plus sÃ©curitaires. SpÃ©cifications par palette. ImpÃ©rial. MÃ©trique. Cubage. 66 pi lin. 20,12 m lin. Poids. 2 390 lb.

[image: alt]

projet urbain et architectural architecture de royan ... AWS

This particular Projet Urbain Et Architectural Architecture De Royan Ecovillage Cite Ideale Royan 1950 Brasilia. Atlantropa Meridienne Verte PDF start with Introduction, Brief Session till the Index/Glossary page, look at the table of content for add

[image: alt]

Architectural - PDFHALL.COM

coin droit ou coin gauche, et comme couronnements rÃ©guliers. Techo-Bloc recommande de toujours fixer les couronnements Ã l'aide d'une colle Ã bÃ©ton, afin de ...

[image: alt]

Mini-Creta 3â€�Architectural

brun chÃ¢taigne brun chocolat * noir onyx *. DESCRIPTION : Mur double face TEXTURE : Ã‰clatÃ©e avec coins et cÃ´tÃ©s rectilignes. Mini-Creta 3â€�Architectural ...

[image: alt]

Eurocopter network architecture and security rules. Technicalfr

o Double connection on workstation Internal network-Internet direct access is strictly forbidden without protection of internal network from unauthorized.

[image: alt]

10 Architectural Drawings

partie de la portée du projet des services de Travaux publics et Services ... EXTERIOR LANDSCAPE – SECURITY HUT OPERATION & VIEW STUDY. Queuing ...

[image: alt]

mental ray - architectural shaders

Apr 6, 2012 - Phenomenon EditorTM, Photon MapTM, mental ray RelayTM ... 2 mia material - material for architectural and design visualisation. 3 The solution is to introduce a mapping of some sort. ... This is because FG is only concerned with t

[image: alt]

architectural speakers - Klipsch

sospeso standard sono realizzati in materiali a bassa densitÃ che possono incurvarsi e vibrare in modo udibile nel tempo. Per mas- simizzare le prestazioni acustiche dei diffusori montati in un con- trosoffitto, Klipsch consiglia di sostituire il pa

[image: alt]

Architectural Considerations - Extras Springer

or renaissance - even when totally new building types such ... that began in the 1920's, and is often called the language and literary movement of the same.

[image: alt]

Architectural, Histochemical, and Contractile ... - Research

isolated with the normal blood supply left intact. The ST was ... restraints, the temperature of the ST was main- dogs (20), monkeys (1), and humans (3,20).

[image: alt]

Architectural lighting ambience intentions for

nique to compute raw geometrical solutions. 2 Previous works materials properties of this space. We con- Computational mechanics Publications,. 1996.

[image: alt]

Achieving ITILÂ® Foundation Certification - CV Harold JACQUOT

Ed Center. Attend. In-Class. Attend from. Home, Work or. AnyWare Center. â€“ORâ€“. Course ... Aligning ITIL processes and functions to service lifecycle stages.

[image: alt]

Typological Urbanism Projective Cities Architectural

This Typological Urbanism Projective Cities Architectural Design Pdf file begin with Intro, Brief Discussion until the. Index/Glossary page, look at the table of ...

[image: alt]

INSTALLATION INSTRUCTION Oculux 3.5” Architectural

Headquarters/Eastern Distribution Center. 44 Harbor Park Drive. Port Washington, NY 11050. Central Distribution Center. 1600 Distribution Ct. Lithia Springs ...

[image: alt]

Architectural lighting ambience intentions for

pose a tool that allow lighting ambience inten- tion description in a given spatial layout, graphic or perspective view. The architect can also imports a texture ...

[image: alt]

A UML-based metamodeling architecture with example ... - CiteSeerX

which the two uppermost layers (meta-metamodeling and metamodeling) are organized into a mirror- such as â€œcomponents may not directly exchange messages; they may only do so via connectorsâ€�. Available at URL www.nist.gov.

[image: alt]

Packt Publishing Service Oriented Architecture With Java Jun 2008.pdf

with Java. Using SOA and web services to build powerful. Java applications ... system, or transmitted in any form or by any means, without the prior written ... (banking, manufacturing, healthcare, e-learning). ... Engineering, Trivandrum (www.cet.ac

[image: alt]

A UML-based metamodeling architecture with example ... - CiteSeerX

interoperability of information systems, and a framework for the Semantic Web. 1 Introduction. UML modeling is â€“by definitionâ€“ a two-step process: first, ...

[image: alt]

Candidate Architecture for MIMO LTE-Advanced Receivers with

First, two complete LTE-Advanced transmission systems have been modeled using the Advanced. Design System (ADS) software: one using the front-end stack-.

[image: alt]

Architectural Overview: Network Deployment .fr

Admin App. Admin. Services. RMI/IIOP. HTTP(S). â€¢Each managed process, node agent, Deployment manager starts with it's own set of configuration files.

[image: alt]

APTIKOM OPEN EDUCATION ARCHITECTURAL FRAMEWORK

Working together with the office of Indonesian Vice President and the Ministry of ... Gross Enrollment Rate (26%); (ii) PhD ratio per institution (average 1:8); (iii) ...

×
Report achieving technical architecture with architectural

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

