

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

AA Tirex-based SSA Interpreter - Florent Bouchez Tichadou

2001] (an IR in the SSA form) for compilation and Java byte-code for ... 2. THE TIREX REPRESENTATION. The Tirex intermediate representation ... and in an experimental Just-In-Time (JIT) compiler for the Common ... libyaml to tokenize the Tirex file. Standard ECMA-335 - Common Language Infrastructure (CLI) 4 Ed.

 Télécharger le PDF

 521KB taille
 2 téléchargements
 266 vues

 commentaire

 Report

A A Tirex-based SSA Interpreter Artur Pietrek, Kalray, Verimag Florent Bouchez, Kalray Benoˆıt Dupont de Dinechin, Kalray

Interpretation is a key part of any virtual execution environment that includes a dynamic optimizer or a Just-In-Time compiler. Interpretation reduces the overhead of seldom executed code, and easily supports lightweight profiling. One problem with interpretation is the support of mixed-mode execution, that is, alternating between interpretation and native code execution inside a given program. We present an interpreter for a Static Single Assignment (SSA) form target-level intermediate representation called Tirex. We show how interpreting a target-level representation eliminates most of the complexities of mixed-mode execution. We also explore the issues related to efficiently interpreting a SSA form program representation and propose a new technique for this. General Terms: Interpretation, Static Single Assignment Form ACM Reference Format: Pietrek A., Bouchez F. and Dinechin B. 2011. Tirex-based SSA interpreter. DCE 2012 V, N, Article A (January 2012), 10 pages.

1. INTRODUCTION

Interpretation is a vital part of virtual execution environments that host dynamic optimizers [Bala et al. 2000], binary translators [Desoli et al. 2002] and Just-in-Time (JIT) compilers. Byte-code interpreters and JIT compilers are nowadays in widespread use thanks to the Java programming language [Gosling et al. 1996] and the ECMA Common Language Infrastructure (CLI) [ECMA International 2006]. It became apparent since the Self system [H¨olzle and Ungar 1994; H¨olzle 1995] that achieving a good compromise between compilation speed and code quality requires dynamic instrumentation or sampling techniques. Interpretation is less efficient than executing compiled code, but it does not incurs the time and space overhead of running a compiler so it is beneficial on non frequently executed portions of the program. Moreover, interpretation facilitates the gathering of dynamic information during program execution, as it is easier to implement profiling mechanisms along with interpretation routines than inserting special code inside generated binary. That makes the coexistence of interpreters and JITs reasonable and justified, and leads to introduction of virtual execution environments such as the Java HotSpot engine [Oracle 2010]. A problem inherent with interpreting target-independent representations in a virtual execution environment is the mixed-mode execution [Agesen and Detlefs 2000]. Processor calling conventions and data layout rules (the processor ABI), and byte endianness, are usually not same for the IR and the underlying platform. This makes the calls to native functions (JIT compiled or from libraries) from within the interpreted program problematic. The interpreter has to call these functions via a trampoline, which is a special piece of code that makes the function arguments compatible with the ABI requirements of the target processor, and provides the result of a call compliant to the ABI of the interpreted IR. This task could be more difficult depending on the complexity of the data structures passed as the arguments. Modern compilers, including JIT compilers, exploit the advantages of the Static Single Assignment (SSA) form introduced by Cytron [Cytron et al. 1991]. The SSA form is a flavor of intermediate representation which simplifies and enhance compiler analyzes and optimizations. Whenever dynamic optimizers try to improve performance of Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:2

A. Pietrek et al.

an existing binary containing native code (obviously not in SSA), they have to transform this code into SSA to be able to benefit from the SSA optimizations. With regards to the SSA form, the target-independent IRs are in a slightly different situation – they are not directly executable by a processor but rather by a virtual machine. Although such IRs could be SSA by design, in practice they are not, except the Low Level Virtual Machine (LLVM) [Lattner and Adve 2004]. A reason could be the increase of code size implied by the SSA form [Gal et al. 2005]. Also, the byte-code IRs of the Java JVM or the CLI were designed before the properties of SSA were explored in JIT systems, and with an efficient interpretation in mind. Since then, Krintz [Krintz 2002] proposed to store and distribute two versions of a program together: SafeTSA [Wolfram et al. 2001] (an IR in the SSA form) for compilation and Java byte-code for interpretation; but still not many interpreters of an SSA form could be found. In this article, we propose the use of a target-level intermediate representation in SSA form called Tirex, which is suitable for both direct interpretation and run-time compilation. We also discuss the problems related to SSA form interpretation and present our solution. The properties of Tirex allow to eliminate the mixed-mode execution problems related to ABI mismatch. Thanks to SSA form interpretation, we avoid SSA construction and destruction overhead as well. This leads to a simpler virtual execution environment that can reduce the execution and compilation time. 2. THE TIREX REPRESENTATION

The Tirex intermediate representation (IR) proposed in earlier work [Pietrek et al. 2011] is an extension of MinIR [Le Guen et al. 2011], an experimental research IR whose textual encoding is based on YAML. Like MinIR, Tirex is designed for connecting several compilers and tools in a compilation tool-chain. Its textual encoding is human-readable and easily modifiable “by hand,” e.g., for testing purposes of parts of a tool-chain. Unlike MinIR, Tirex is target-level representation able to represent complete programs, in particular the data stream (static storage and stack storage). The key feature of the Tirex representation is that, while being close to assembly language with its instructions and data statements, it still contains the complete program structure, including basic blocks within the functions, loops, instructions and their operands, explicit control-flow (i.e., target blocks of branch instructions). Because of that, there is no need for rebuilding parts of this information, like in dynamic optimizers. Rebuilding high-level information such as unaliased data objects and indirect branch targets, is difficult, time-consuming and in some cases even impossible. A program in Tirex can be already fully formed (i.e., after register allocation) or in the SSA form with only partially prepared stack frames, or both (some functions in SSA, some not). Additionally, a program can be annotated with loop-scoped memory dependences which, with the SSA form, open the door for aggressive optimizations normally reserved for compilation of higher level code. The design of Tirex enables to move more time-consuming phases of the compilation process to the upstream compiler, compared to target independent IRs (JVM, CLI, LLVM). Precisely, lowering the calling conventions, laying out data objects according to the target ABI and selecting instructions are done offline by the front-end compiler, hopefully leaving more time for the run-time to exploit the additional information and to perform aggressive optimizations to gain performance. 3. THE TIREX INTERPRETER 3.1. The LAO and The MDS

The Tirex Interpreter is implemented on the top of the Linear Assembly Optimizer (LAO) framework, previously used in production compilers for the ST120 VLIW-DSP Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A Tirex-based SSA Interpreter

A:3

Fig. 1. The Tirex interpreter.

processor [Dinechin et al. 2000] and the ST200/Lx VLIW processors [Dinechin 2004], and in an experimental Just-In-Time (JIT) compiler for the Common Language Infrastructure (CLI) for the ST200/Lx VLIW processors (CLI-JIT) [Dinechin 2008; Cornero et al. 2008]. The LAO contains several production-grade instruction schedulers and software pipeliners based on heuristics or integer programming [Dinechin 2007]. The LAO also supports the Static Single Assignment (SSA) form at target level, with innovative high-quality and high-speed SSA form optimizations implemented [Boissinot et al. 2008; Boissinot et al. 2009]. The LAO target dependent code is generated by a Machine Description System (MDS), which is a structured data repository containing full description of a particular processor architecture, micro-architecture, and ABI. This includes, among others, instruction and register sets, calling conventions and the behavioral description of instructions. The MDS contains a collection of programs used to target software development tools for that particular processor, thus allowing to centralize the machine description for all tools in the compilation tool-chain. As shown on the Figure 1, our LAO-based interpreter comprises: Tirex Parser. The Tirex representation, being a YAML document when in textual form, can be easily parsed by standard tools like libyaml. However, the LAO only uses libyaml to tokenize the Tirex file. A recursive-descent parser directly builds the code and data streams in the LAO internal structures. This design ensures that, by just changing the tokenizer, a binary encoding of a Tirex representation could be read with low overhead. Behavioral functions. The MDS uses the target processor description to generate a set of behavioral functions. These functions are divided into three phases: fetch, execute and write-back. While being initially designed to be used by the instruction set simulator (ISS), these functions are also used by our interpreter, which we describe in more details in Section 3.2 The register Set. The MDS provides the register set description and ABI register conventions for the LAO. The register set description leads to the creation of an array as a part of the interpreter. Elements of this array are then used by the behavioral functions during interpretation, as if they were the architectural registers, to store the computed values. Data stream. If a program contains the (global) data stream, after loading the program and before the interpretation, memory space is allocated and the symbols related to the data objects are resolved. Later, during interpretation, addresses of referenced Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:4

A. Pietrek et al.

data are provided via the symbols. If a data object contains an initializer, the allocated memory is initialized according to it. The run-time stack. The run-time stack is used to keep the stack frames of functions. Similarly to the register set, it is an array of memory that reflects an internal state of the interpreter. One of the registers from the register set, specified in the calling conventions as the stack pointer, is set to point to the current stack frame in this interpretation stack. The run-time stack of the interpreter should not be confused with the evaluation stack in stack-based Virtual Machines (Tirex is a target-level IR, hence register-based). 3.2. Interpreting Instructions

An age-long debate whether a stack-based architecture or a register-based better suits the interpretation did not provide general conclusions until work of Shi [Shi et al. 2008]. He shows that although stack-based code is smaller, the register-based requires fewer executed instructions leading to significant speedups. The Tirex, being targetlevel, naturally is register-based, thus the interpreter works with SSA variables and interpreted registers and the run-time stack used for local function storage. The interpreter is implemented as a threaded interpreter, which executes so called instruction behavioral functions that correspond to instructions in the Tirex form. These functions are automatically generated by the MDS and were designed to be used by the instruction set simulator, but are suitable for interpretation purposes as well. The Tirex IR does not contain entry directive, but rather the interpreter assumes that a main function is the entry of a program. Hence, after loading Tirex, the interpreter searches for the main function and starts the execution from the first instruction of this function. Interpretation of branch instruction is extended to process φ-functions after executing behavior function for branch; Details are explained in Section 3.4. φ-functions, call and return instructions are not interpreted using automatically generated behavior functions, but by custom code. Call instructions are treated differently depending on whether the target is a function in the interpreted Tirex program or some native code. In the first case a new context (memory space reserved for the values of a function, see Section 3.4) is created and the target function is interpreted afterward. When the return instruction is interpreted, the context is destroyed and the interpreter goes back to the caller. If the target is a native function, a trampoline is called to prepare the registers and stack as described in Section 3.3. 3.3. Calling Native Code

The fact that Tirex is already a target-level representation simplifies significantly interoperability when executing both interpreted and native code, also called mixedmode execution. Usually, when the interpreted intermediate representation is targetindependent, the ABI differs for native and interpreted code. This, plus in some cases, different endianness and different sizes of types, require the interpreter to emit special code that prepares the parameters passed to the native code and to get the correct result back. Tirex, in the other hand, is already target-level with the same endianness, data layout, calling conventions and sizes of parameters, hence the problem of mixed-mode execution simply does not exist. To perform the call, the interpreter uses a trampoline, which has to perform only a small number of tasks before and after the call.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A Tirex-based SSA Interpreter

A:5

Fig. 2. Example of a call in Tirex

The pre-call tasks are the following four: (1) (2) (3) (4)

Store the return address and stack pointer in memory Copy arguments in interpreted registers to processor’s Point the processor’s stack pointer to the interpreter’s run-time stack Call the function (using indirect call, i.e., the address of the function)

And only two tasks are required post-call: (1) Copy the returned values in processor registers to interpreted registers (2) Restore original return address and stack pointer Depending on the call signature, the target processor architecture, and its ABI, we pass parameters through registers or the stack, or both. An interesting property of interpreting the Tirex representation is that parameters are already prepared by instructions preceding the call instruction, either in interpreted registers or the run-time stack, depending whether the ABI expects them in registers or on the stack. Then, during the interpretation of a call instruction, the trampoline function only has to copy virtual registers to actual ones and set the stack pointer to the run-time stack to respect the argument-passing ABI constraints. As an example, let us assume that the ABI requires that up to four parameters can be passed in registers r0 to r3 while the rest must be on the stack. Similarly, a function should return the result in up to four registers r0 to r3 or in the buffer allocated by the caller on the stack if the result is bigger. We show such an example of Tirex code just before a call on Figure 2. While interpreting the code, each parameter is prepared in the interpreted (not physical) register set and on the run-time stack if necessary. The trampoline is a function written in the assembly code of the target architecture to ensure that no stack or register operation is performed by the compiler. It takes as arguments the addresses of the interpreted register set, the interpreted stack, and the function called. As shown on the Figure 3(a), inside the trampoline the processor return address and stack pointer are saved in memory. The processor stack pointer currently keeps the frame of the function that interprets the Tirex code. We set it to point to the run-time stack. In other words, the real stack is switched with the virtual runtime stack of the interpreter for the duration of the native call. This allows interpreted and native code to effectively use the same stack. After this, the interpreted registers specified in the ABI to pass the parameters are copied to their processor equivalents. Finally the function is called using the provided address. Figure 3(b) shows that after returning from the called function, we just restore the return address and original stack pointer, and copy back the processor registers containing the result to their interpreted equivalent. If the result was passed on the stack, Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:6

A. Pietrek et al.

(a) Passing arguments before the call, saving stack pointer and return address and switching stack pointers

(b) Copying the result to the interpreted registers after the call and restoring stack pointer and return address

Fig. 3. Switching processor registers with interpreted in the trampoline during a call to a native code

we do not need to do anything as the real stack was switched with the interpreter’s run-time stack for the time of call. The interpretation of target-level IR on the target architecture itself removes the need to take care of any other register in the trampoline: caller-save processor registers (used by executing the interpreter itself) are already saved by code generated during the compilation of the interpreter; callee-save registers will be handled by the native function. The trampoline itself does not use any register but the argument passing ones so there is no problem with regards to the caller-save registers. 3.4. Interpreting the SSA Form

The SSA form can be challenging for the interpretation process. The main property of the SSA is that each variable has exactly one static assignment in the program. In other words, a variable in a program can occur on the left side of only one instruction in a program, possibly leading to a large number of variables. Another difficulty for interpretation is the notion of φ-functions introduced to select and assign values at the beginning of a basic block, depending on the incoming edge in the control flow. Interpreted registers and contexts. A source program uses a finite but unbounded number of variables, while native code uses only a fixed (and small) number of registers. The process of mapping those variables to either memory or registers is called register allocation. This step is one of the last performed during compilation, and a program under SSA form still uses variables; Moreover it use even more variables than the original program because of the SSA construction. Hence the memory requirements to store all the values during interpretation can be large. Furthermore, we must ensure that the values in variables do not get erased by mistake. The variables are given unique names so that different functions cannot overwrite the values of their variables. However, these variables are not divided into callersave and callee-save as the processor registers. So, if a function is called multiple times in different contexts, e.g., in the case of recursive functions, the variables in this function will be overwritten. This makes the memory requirements even bigger, especially in case of recursive calls. Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A Tirex-based SSA Interpreter

A:7

Fig. 4. An example of recursive function interpretation trace and its context stack in different execution states.

Although a program in SSA could have large number of variables, which of them will be actually used depends on the control-flow. So the amount of storage space, obviously with a cost of dynamic allocation, could be limited to only required values. Each time a function is entered, we create a new context on the context stack in similar fashion as a new stack frame. A context is destroyed when control reaches return instruction. A storage space for a value is provided on demand when needed in a current context. As the amount and order of values inserted into a context could differ, a context is implemented as a hash table to allow fast access to a required value. Figure 4 shows a trace of instructions during interpretation of a recursive function call (reduced only to two instructions per call for readability) and the context stack in different execution states. After first instruction, variable T232 is inserted to the current context, where already T231 was previously inserted. When interpreting a call instruction, a new context is pushed on the context stack, on which variables will be inserted. At this point, SSA variables can have multiple storage spaces, one for each existing context. When return from function occurs, its context is popped from the context stack. φ-functions. φ-functions are special instructions introduced in the SSA form to reconcile the value of SSA variables at control-flow join points. These functions need to be interpreted and need a particular treatment for multiple reasons. First, they act as multiplexers that chooses a value depending on which control-flow path the program comes from, hence their behavior depends on past execution. For instance, suppose a conditional branch in the original program with assignment a = 1 in the “true” branch and a=2 in the “false” one. Since SSA allows only one static assignment, this would be transformed into a1 = 1 and a2 = 2 in the branches, and the φ-function a3 = φ(a1 , a2) after the branches join, meaning that a3 takes the value of a1 if the path comes from the “true” branch, and a2 if it comes from the “false” branch. Moreover, multiple φ-functions at the beginning of a block need to be executed concurrently as their semantics is that the selection of values is done in parallel. Failure to do so may produce wrong results, the classical example being the “swap problem” [Briggs et al. 1998] where φ-functions are used to swap values in variables, e.g., a = φ(b, ...) conjointly with b = φ(a, ...). In his Interpretable SSA (ISSA) [von Ronne et al. 2004] intermediate representation, Von Ronne proposed to extend the instruction set with a “pfe” instruction marking the end of φ-functions in a block, and an auxiliary CFG-Edge Number (CEN) register. The CEN register is set when interpreting branching instructions to store the path taken by the program. The φ-functions are then interpreted one by one but storing the results in temporary values. Finally, when encountering the pfe instruction, results are copied into the correct variables. This solution allows for real direct imperative interWorkshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:8

A. Pietrek et al.

pretation but requires extensions of the classical SSA form with a special instruction and register, which we believe is unnecessary. In our case, instead of setting an auxiliary register, interpretation of a branch instruction simply checks if there are any φ-function in the target basic block. If so, they are interpreted and the results are also stored in temporary storage. Our SSA form only allows φ-functions to be placed at the beginning of a basic block (as it is usually the case), so when there is no more φ-function left, the values are copied to their correct interpreted registers. 4. FUTURE WORK

The behavior functions used in the interpreter were designed to be part of the instruction set simulator, thus to provide correct results of instructions on any architecture. Using them allowed to construct a working interpreter fast. Tirex, however, is a targetlevel representation, and as such must be interpreted on a specific architecture, thus a natural way of interpretation of instructions would be to use the real instructions via inline assembly autogenerated from the MDS. We plan to implement mechanisms of gathering profile and dynamic information of a program in the interpreter. Unified intermediate representation for interpretation and JIT makes the profile more accurate, as the control-flow after Out-of-SSA in generated (not-optimized) binary will be similar to that in the interpreted code. That dynamically gathered information will be used to drive the JIT compilation and level of its optimization. The Tirex representation is textual, which is good for experimental purpose and compilation tools verification. It is not the best solution in terms of efficiency, as it introduces overhead during the load of a program. Ultimately, we need to propose a binary encoding as a replacement of textual representation of Tirex to target performance in interpretation and JIT compilation. 5. RELATED WORK

As we note in the introduction, there are not many SSA form interpreters. One of them could be found as a part of the Low Level Virtual Machine (LLVM) [Lattner and Adve 2004]. It was designed to interpret LLVM’s IR, which is target-independent SSA IR, and no work on measuring its performance or describing its implementation could be found. The authors state themselves in the source code, that it was designed “to be very simple, portable and inefficient.” Von Ronne et al. proposed an “Interpretable SSA intermediate representation” [von Ronne et al. 2004], which basically introduces some extensions to a classical SSA flavor. These extensions include a dedicated register containing edge number used by φ-functions and an instruction marking explicitly the end of φ-functions in a basic block, both of which, we believe, are unnecessary. They also proposed a way to support arrays, which in our case of target-level IR is not required. Although they mention that recursive calls would require storing the variables, probably on the stack, the discussion ends on that point. They are not taking into account the fact that a function could be called several times in different contexts before returning from previous calls, thus that values could be overwritten in more cases than just recursive calls. 6. CONCLUSIONS

By choosing a target-level intermediate representation, we give up program portability across processor architectures. However, this allows to keep the same processor calling conventions and data layout rules (ABI) for both interpreted and native code. As our implementation demonstrates, this choice dramatically simplifies the tasks that the virtual execution environment has to do before and after a native function call in order Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A Tirex-based SSA Interpreter

A:9

to provide compatibility of function arguments and results. In practice, mixed-mode execution is no longer a problem. While being target-level, Tirex explicitly maintains the program structure, keeps data objects separate, and allows for additional high-level information. Currently, this includes loop nesting forest and loop-scoped memory dependences which are used by the JIT compiler. Such information ensures that aggressive compiler optimizations can still be applied, like program specialization. Compared to target-independent IRs such as JVM, CLI, or LLVM, Tirex allows to move the burden of code lowering to processor ABI and instruction selection back to the upstream compiler, thus increasing the budget available for run-time compiler optimizations. Finally, we show how the SSA form of Tirex once loaded in the virtual execution environment internal structures provides a unified program representation which is directly used for interpretation and JIT compilation. This reduces the memory requirements compared to keeping both at the same time; and removes the need for run-time SSA form construction. REFERENCES A GESEN, O. AND D ETLEFS, D. 2000. Mixed-mode bytecode execution. Tech. rep., Mountain View, CA, USA. B ALA , V., D UESTERWALD, E., AND B ANERJIA , S. 2000. Dynamo: a transparent dynamic optimization system. SIGPLAN Not. 35, 1–12. B OISSINOT, B., D ARTE , A., R ASTELLO, F., D INECHIN, B., AND G UILLON, C. 2009. Revisiting Out-of-SSA Translation for Correctness, Code Quality and Efficiency. In CGO ’09: Proceedings of the 2009 international symposium on Code Generation and Optimization. IEEE Computer Society, Washington, DC, USA, 114–125. B OISSINOT, B., H ACK , S., G RUND, D., D INECHIN, B., AND R ASTELLO, F. 2008. Fast Liveness Checking for SSA-Form Programs. In CGO ’08: Proceedings of the sixth annual IEEE/ACM international symposium on Code Generation and Optimization. ACM, New York, NY, USA, 35–44. B RIGGS, P., C OOPER , K. D., H ARVEY, T. J., AND S IMPSON, L. T. 1998. Practical improvements to the construction and destruction of static single assignment form. Softw. Pract. Exper. 28, 859–881. C ORNERO, M., C OSTA , R., PASCUAL , R. F., O RNSTEIN, A., AND R OHOU, E. 2008. An Experimental Environment Validating the Suitability of CLI as an Effective Deployment Format for Embedded Systems. In HiPEAC International Conference. C YTRON, R., F ERRANTE , J., R OSEN, B. K., W EGMAN, M. N., AND Z ADECK , F. K. 1991. Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13, 4, 451–490. D ESOLI , G., M ATEEV, N., D UESTERWALD, E., FARABOSCHI , P., AND F ISHER , J. A. 2002. Deli: a new runtime control point. In Proceedings of the 35th annual ACM/IEEE international symposium on Microarchitecture. MICRO 35. IEEE Computer Society Press, Los Alamitos, CA, USA, 257–268. D INECHIN, B. 2007. Time-IndexedFormulations and a Large Neighborhood Search for the ResourceConstrained Modulo Scheduling Problem. In 3rd Multidisciplinary International Scheduling conference: Theory and Applications (MISTA). D INECHIN, B. 2008. Inter-block Scoreboard Scheduling in a JIT Compiler for VLIW Processors. In Euro-Par. 370–381. ` , F., G UILLON, C., AND S TOUTCHININ, A. 2000. Code Generator OptimizaD INECHIN, B., DE F ERRI ERE tions for the ST120 DSP-MCU Core. In CASES’00: Proceedings of the 2000 international conference on Compilers, Architecture, and Synthesis for Embedded Systems. ACM, New York, NY, USA, 93–102. D INECHIN, B. D. D. 2004. From machine scheduling to VLIW instruction scheduling. ST Journal of Research 1, 2. ECMA I NTERNATIONAL. 2006. Standard ECMA-335 - Common Language Infrastructure (CLI) 4 Ed. G AL , A., P ROBST, C. W., AND F RANZ , M. 2005. Structural encoding of static single assignment form. Electron. Notes Theor. Comput. Sci. 141, 2, 85–102. G OSLING, J., J OY, B., AND S TEELE , G. L. 1996. The Java Language Specification. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ¨ H OLZLE , U. 1995. Adaptive optimization for self: Reconciling high performance with exploratory programming. Tech. rep., Mountain View, CA, USA.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:10

A. Pietrek et al.

¨ H OLZLE , U. AND U NGAR , D. 1994. A third-generation self implementation: reconciling responsiveness with performance. In Proceedings of the ninth annual conference on Object-oriented programming systems, language, and applications. OOPSLA ’94. ACM, New York, NY, USA, 229–243. K RINTZ , C. 2002. Improving mobile program performance through the use of a hybrid intermediate representation. In Proceedings of the inaugural conference on the Principles and Practice of programming, 2002 and Proceedings of the second workshop on Intermediate representation engineering for virtual machines, 2002. PPPJ ’02/IRE ’02. National University of Ireland, Maynooth, County Kildare, Ireland, Ireland, 175–180. L ATTNER , C. AND A DVE , V. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In CGO ’04: Proceedings of the international symposium on Code generation and optimization. IEEE Computer Society, Washington, DC, USA, 75. L E G UEN , J., G UILLON, C., AND R ASTELLO, F. 2011. Minir, a minimalistic intermediate representation. In Proceedings of the Workshop on Intermediate Representations, F. Bouchez, S. Hack, and E. Visser, Eds. 5–12. O RACLE. 2010. The java hotspot performance engine architecture. P IETREK , A., B OUCHEZ , F., AND D INECHIN, B. 2011. Tirex: A target-level intermediate representation for compiler exchange. In Proceedings of the Workshop on Intermediate Representations, F. Bouchez, S. Hack, and E. Visser, Eds. 13–20. S HI , Y., C ASEY, K., E RTL , M. A., AND G REGG, D. 2008. Virtual machine showdown: Stack versus registers. ACM Trans. Archit. Code Optim. 4, 2:1–2:36. VON R ONNE , J., WANG, N., AND F RANZ , M. 2004. Interpreting programs in static single assignment form. In Proceedings of the 2004 workshop on Interpreters, virtual machines and emulators. IVME ’04. ACM, New York, NY, USA, 23–30. W OLFRAM , A., D ALTON, N., VON R ONNE , J., AND F RANZ , M. 2001. Safetsa: a type safe and referentially secure mobile-code representation based on static single assignment form. In Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and implementation. PLDI ’01. ACM, New York, NY, USA, 137–147.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

des documents recommandant

[image: alt]

Engineering - Florent Bouchez Tichadou

Apr 22, 2009 - well-known benchmark suite of graphs as the basis for experiments. The dissertation ... The use of automated theorem provers has become successful, particularly in the fields of type checking ... dissertation, the answer is No.

[image: alt]

Pascal - Florent Bouchez Tichadou

-compound statement begin x := y; y := z end. -procedure call ... Comments: A comment in Pascal- is an arbitrary sequence of characters enclosed in braces { }.

[image: alt]

Tirex - Florent Bouchez Tichadou

[18], and in an experimental Just-In-Time (JIT) compiler for the. Common ... discuss the integration Tirex, our extended version of MinIR, in our toolchain in ...

[image: alt]

Curriculum Vitae - Florent Bouchez Tichadou

2010â€“Mar. 2013. Post-Doctoral fellow at the Indian Institute of Science (IISc) of Bangalore, India, ... Delaware University, USA, Part 5 of LCPC tutorial on SSA. Oct. 2009 ... 2011. Skills. Programming: C, Pascal, Perl, Ruby, OCaml, TEX/LATEX. Work

[image: alt]

SSA Destruction after Register Allocation - Florent Bouchez Tichadou

Properties of an RTG: â€¢ Maximum in-degree equals 1. â€¢ 3 types of RTG (tree, cycle,.) F. Bouchez (IISc â€“ India). How to get the hell out of SSA? LCPC '09. 16 / 30 ...

[image: alt]

Register Allocation - Florent Bouchez Tichadou

Basic block technique (Belady). Integer Linear Programming (George & Appel). Florent Bouchez (LIP â€” ENS Lyon). Register allocation. 18 August 2008. 17 / 32 ...

[image: alt]

Register Allocation - Florent Bouchez Tichadou

Spill is difficult, hence heuristics are righteously used. Some good existing heuristics: Basic block technique (Belady). Integer Linear Programming (George ...

[image: alt]

Computer Science - Florent Bouchez Tichadou

Nov 20, 2009 - Turing machines (2): how powerful? What can a Turing machine do? In short: everything! In fact, we compare programming languages, ...

[image: alt]

Advanced Register Allocation - Florent Bouchez Tichadou

Chaitin et al. model. Interference graph k j g h f e m b c d. Live-ranges g h f e m b ... Conclusion. Register allocation is NP-complete a b d c return a + x. Ba switch.

[image: alt]

Advanced Register Allocation (2) - Florent Bouchez Tichadou

Apr 16, 2009 - In incremental coalescing, the graph must stay greedy-k-colorable at each step. Problem. It may be possible that one requires more than one ...

[image: alt]

GPGPU and Matlab - Florent Bouchez Tichadou .fr

Jan 8, 2010 - GPUlib2 is available under the General Public License (GPL), and is a the assignment â€œC2p29_PSET4_1bâ€� from a course at the MIT [3], and.

[image: alt]

Speeding up computations: bring the GPUs - Florent Bouchez Tichadou

Nov 20, 2009 - Graphic Processing Unit. This is where we jump to the Post-Doc presentation of Sept. 12th. F. Bouchez (IISc). HPC and GPUs. 20/11/2009. 5/7 ...

[image: alt]

On the Complexity of Register Coalescing - Florent Bouchez Tichadou

aggressive coalescing as no register constraint is taken into account in this In other words, borrowing the subtle title of Cytron and Fer- rante's paper [15] ...

[image: alt]

A. Darte and F. Bouchez and F. Rastello - Florent Bouchez Tichadou

Architectural subtleties: specific registers (sp, fp, r0), variable affinities (auto-inc), register pairing (64 bits ops), distributed register banks, etc. â€¢ Rules of the game:.

[image: alt]

On the Complexity of Spill Everywhere under SSA Form - Florent

[7] Zoran Budimlic, Keith Cooper, Tim Harvey, Ken Kennedy, Tim. Oberg, and Steve ... [20] Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and.

[image: alt]

aa

A recursive algorithm leads to the decomposition termed SVD-k. A generaliza- ... Parafac model (Harshman, 1970; Kruskal, 1977) and Cande- comp by Caroll ...

[image: alt]

FLORENT FOUQUE

[image: alt]

Google Canlendrier - ssa nimes

Google Canlendrier. Extrait du SSA NIMES http://ssanimes.free.fr. Google Canlendrier. - Tests -. Date de mise en ligne : vendredi 9 octobre 2009. SSA NIMES.

[image: alt]

Shadowing - Interpreter Training Resources

require many tens of hours of actual speech production â€“ it is essential that the language actually be voiced, or the exercise is useless. It is also recommended, ...

[image: alt]

AAAAAcA A 44 BAA gA AA & ## 44 o gAgra - AA AA gA AA &8 ## 44

Do-mi-nus te- #B hA A.) cum : be - ne-. Z. ##. B o. B n g. AA. (. A. (A. Do-mi-nus te-. B. hA A.) cum : be - ne-. &##A A B di - cta tu. 9. S n. 10 o. gAin. 11. A AAAAA ...

[image: alt]

Colour television Chassis AA

Figure 4-9 Light engine removal (part 1). Figure 4-10 Light ... Figure 4-12 Cable dressing part 2: Light Engine the SearchMan electronic manual of the defective chassis, 2720 K6. 2721 K7. 2722 J6. 2723 G9. 2724 K9. 2725 I11. 2726 I10.

[image: alt]

Summertime - Partition SSA - p1.jpg

1935 (Renewed) GEORGE GERSHWIN MUSIC, IRA GERSHWIN MUSIC ... ina. E7B good. E7+5)/G#. E7B. Anis. | MINA. (. ä¸€. ä¹¦. é›„äºº. å›¾5 look. So look in. }s. Amb ... you'll mf. 3. 9. . you goin' to rise up and sing. You goin' to sing,. E7/B. Am6. 3.

[image: alt]

Florent Pommier

Lightroom, Photoshop, InDesign, Word,. Excel, Netia, Powerpoint. MaÃ®trise du travail sur CMS comme Drupal. Langues Ã©trangÃ¨res. Anglais : bonne maÃ®trise Ã ...

[image: alt]

TE2.1E AA - Planetatecnico

persons wearing clothes and shoes made of synthetic materials. Protective ... Use only grounded instruments for testing and processing purposes. 5. Remove or ...

×
Report AA Tirex-based SSA Interpreter - Florent Bouchez Tichadou

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

