

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

A tool flow and architecture for composable software protection

logic. Plugin-based Tool Flow. C code. C++ wrappers available at https://github.com/diablo-rewriter/ gcc/llvm/binutils available at https://github.com/aspire-fp7/ ...

 Télécharger le PDF

 9MB taille
 2 téléchargements
 336 vues

 commentaire

 Report

A tool flow and architecture for composable software protection prof. Bjorn De Sutter Computer Systems Lab Ghent University

Code and data protection day, Paris-Saclay, 13 Dec 2018

Overview • ASPIRE project introduction • reference architecture for software protection • compiler tool chain for software protection • attack modeling

2

https://www.aspire-fp7.eu

SafeNet use case SafeNet'use'case'

Gemalto use case Gemalto'use'case'

Nagravision use case Nagravision'use'case'

Data Hiding

ASPIRE'Framework' ' Software Decision'Support'System' ' Protection ' ' Tool Flow ' So9ware'Protec:on'Tool'Chain' '

Algorithm Hiding

Anti-Tampering

Protected SafeNet use case Protected'SafeNet'use'case'

Protected Gemalto use case Protected'Gemalto'use'case'

Protected Nagravision use case Protected'Nagravision'use'case'

Remote Attestation

Renewability 3

Man At The End (MATE) Attacks on Mobile Apps

4

Man At The End Attacks on Mobile Apps software analysis & editing tools

developer boards

screwdrivers

FPGA sampler

oscilloscope

JTAG debugger 5

6

Economics of MATE Attacks

protection

€/day

engineering a.k.a. identification

exploitation

time

6

7

Economics of MATE Attacks €/day

diversity

protection protection

engineering a.k.a. identification

exploitation

time

7

8

Economics of MATE Attacks €/day

diversity

protection

renewability

protection

engineering a.k.a. identification

exploitation

time

8

Attack Scope • reverse engineering & tampering • static attacks • structural code and data recovery (e.g., disassembly, CFG reconstruction) • structural matching of binaries • against known code (e.g., library identification) • of related binaries (e.g., diffing) • tampering (e.g., code editing)

• dynamic attacks • • • • •

attacks on communication channels (e.g., sniffing, spoofing, replay attacks) fuzzing, tracing, profiling, instrumentation, emulation debugging (software or hardware debugger) structure and data analysis (e.g., unpacking, taint analysis) tampering (e.g., code injection, custom emulation, custom OS)

• hybrid attacks (e.g., concolic execution, static analysis on dynamic graphs)

9

Attack Models sub-goal start of the attack final goal

attack steps

10

Reference Architecture mobile device (untrusted, MATE attack)

wireless/mobile network (untrusted, MITM attack)

client-side app hidden data hidden algorithms anti-tampering mechanisms

server (trusted) server-side logic

renewability-supporting virtual machine

remote verifier

secure channel

bytecode provider renewability protection engine

remote attestator

ASPIRE protected program

target platform: ARMv7-A / Android 4.4 native binaries / dynamically linked libraries 11

Plugin-based Tool Flow C code

ASPIRE data hiding source algorithm hiding level protection anti-tampering

annotated source code

C++ wrappers

available at https://github.com/aspire-fp7/ ASPIRE protected program client-side app

partially protected source code

gcc/llvm/binutils

standard compiler object code

ASPIRE binary level protection

server-side logic

data hiding

remote attestation

algorithm hiding

renewability

anti-tampering

security libraries

available at https://github.com/diablo-rewriter/

12

Decision Support System !input! provided!by! the!user!

pla2orm!descrip5on! annota5ons! assets!

ASPIRE'Decision'Support'System' ASPIRE!Knowledge!Base!

tool!chain! instruc5ons!

13

Industrial Use Cases App (Dalvik Java)

Kc

Android Media/DRM Framework DRMPlugin

CryptoPlugin

(dynamically linked C/C++ library)

(dynamically linked C/C++ library)

Verify()

Decrypt()

14

Reference Architecture Data$Hiding$

n n

Algorithm$Hiding$

An01Tampering$

Remote$A6esta0on$

Renewability$

data obfuscations white box cryptography (static keys, dynamic keys, time-limited) ciphertxt = AES_enc(plaintxt, key);)

)

obf_key = receive(server); ciphertxt = AES_WBC_dyn_enc(plaintxt, obf_key);

ciphertxt = AES_WBC_enc(plaintxt);

legend:

source-to-source rewriting binary rewriting combination

15

Reference Architecture Data$Hiding$

Algorithm$Hiding$ n n n n n n

An01Tampering$

Remote$A6esta0on$

Renewability$

control flow obfuscations multithreaded crypto instruction set virtualization code mobility self-debugging client-server code splitting legend:

source-to-source rewriting binary rewriting combination

16

Reference Architecture Data$Hiding$

Algorithm$Hiding$

An01Tampering$ n n n n

Remote$A6esta0on$

Renewability$

code guards static and dynamic remote attestation reaction mechanisms client-server code splitting

legend:

source-to-source rewriting binary rewriting combination

17

Reference Architecture Data$Hiding$

Algorithm$Hiding$

An01Tampering$

Remote$A6esta0on$

Renewability$

native code diversification bytecode diversification renewable white-box crypto mobile code diversification renewable remote attestation

legend:

source-to-source rewriting binary rewriting combination

n n n n n

code guar static and reaction m client-serv dfdfsdf

18

Reference Architecture

19

Reference Architecture – Instruction Set Virtualization

D1.04 – Reference Architecture v2.1

Original application logic

1

5

Stub 1

Stub 2 2

4

VM

3

Bytecode 1 Bytecode 2 20

Figure 6 – Client-side code splitting run-time behaviour

A detailed description of each step depicted in Figure 6 is presented below.

Figure 9 – Structure of a message

3.3.7 Client/server code splitting splitting sequence diagram Figure 10 comprises the sequence diagram of the protection technique, followed by a detailed description of each step depicted. The figure depicts a prototypical execution of the protected application, where client:Client represents the client, while backendDispatcher:Server represents the slice manager that handles connections and messages, and slicedCode:Server is the sliced code at the server side.

Reference Architecture – Client-Server Splitting

21

Figure 10 – Sequence Diagram for Code Splitting

Reference Architecture – Integrity Checking Original Application logic

1

2

3

4

5

Attestator

Verifier

Update Functions

Query Functions

Reaction

attestators: - code guards - timing - IO of functions - control flow tags

Delay Data Structures verification: - local vs. remote - prevent replay attacks

Delay Component delay reaction: - attacker sees symptom - hide relation with cause!

reaction: - abort - corruption - notify server (block player) - graceful degradation - lower quality 22

23

Anti-Debugging through Self-Debugging function 1 function 2 function 3 mini debugger

23

24

Anti-Debugging through Self-Debugging function 1 function 2 function 3 mini debugger

24

25

Anti-Debugging through Self-Debugging

debuggee

process 1045

process 3721

function 1

function 1

function 2

function 2

function 3

function 3

mini debugger

mini debugger

debugger

25

26

Anti-Debugging through Self-Debugging

debuggee

process 1045

process 3721

function 1

function 1

function2a 2 function

function2b 2 function

function 3

function 3

mini debugger

mini debugger

debugger

26

Plugin-based Tool Flow C code

ASPIRE data hiding source algorithm hiding level protection anti-tampering

annotated source code

C++ wrappers

ASPIRE protected program client-side app

partially protected source code

gcc/llvm/binutils

standard compiler object code

ASPIRE binary level protection

server-side logic

data hiding

remote attestation

algorithm hiding

renewability

anti-tampering

security libraries

27

Source code annotations void g(int x) { _Pragma("ASPIRE begin softvm(softvm)") _Pragma("ASPIRE begin protection(obfuscations, enable_obfuscation(opaque_predicates:percent_apply=25))") int z=(x+x)ˆ2; z = z*x; z = f(z); _Pragma("ASPIRE end") // obfuscations _Pragma("ASPIRE end") // softvm return z; }

28

Source Code Annotations static const char cipher[] __attribute__((ASPIRE("protection(wbc,label(ExFix),role(input),size(16))"))) = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; static const char key[] __attribute__ ((ASPIRE("protection(wbc,label(ExFix),role(key),size(16))"))) = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }; char plain[16] __attribute__ ((ASPIRE("protection(wbc,label(ExFix),role(output),size(16))"))); _Pragma ("ASPIRE begin protection(wbc,label(ExFix),algorithm(aes),mode(ECB),operation(decrypt))") decrypt_aes_128(cipher, plain, key); _Pragma("ASPIRE end")

29

Plugin-based Tool Flow SC03 .c|.h

SLP03.01 WBC annotation extraction

SLC03.02 Parameters XML

SLP03.06 WBC renewabilty

SLP03.02 Whitebox tool python

SC04.01 .c|.h

SLP03.03 WBC header incl.

SC04.02 .c|.h

30

Plugin-based Tool Flow SC05 .i

SLP05.01 source code analysis CodeSurfer

SLP05.02 data obfuscation TXL

D05.01 analysis results (aliasing, slices, ...)

SC06 .i 31

Plugin-based Tool Flow D01 annotation facts

D02 map file a.out.map | liba.so.map

BLP01.02 instruction selector .so

BC02 binary | library a.out | liba.so

BLP01 BLP01.01 bytecode chunk identifier diablo

BC08 object code .o

linker script

BLC02 extractable chunks JSON

BLP02 X-translator ...

BC03 bytecode + stubs .o

32

https://www.youtube.com/playlist?list=PLWwJ31jD3OCG4tq-_CXOQMWxSTgnyXIiR

33

Attack Modeling • experiments with professional hackers • public challenge for amateurs • methodological analysis of reports M. Ceccato, P. Tonella, C. Basile, P. Falcarin, M. Torchiano, B. Coppens, B. De Sutter Understanding the Behaviour of Hackers while Performing Attack Tasks in a Professional Setting and in a Public Challenge Empirical Software Engineering, 2018

34

Attack Taxonomy Asset

15

Obstacle

Attack strategy Background knowledge

Protection Obfuscation Control flow flattening

Knowledge on execution environment framework

Opaque predicates

Workaround

Virtualization

Analysis / reverse engineering Static analysis Diffing

Anti-debugging White box cryptography Tamper detection

Control flow graph reconstruction

Code guard

Dynamic analysis Dependency analysis Data flow analysis Memory dump

Checksum Execution environment Limitations from operating system Weakness

Monitor public interfaces

Global function pointer table*

Debugging

Recognizable library

Profiling

Shared library

Tracing

Java library

Statistical analysis

Decrypt code before executing it

35

Attack Taxonomy 16

Attack step Prepare attack Choose/evaluate alternative tool Customize/extend tool Port tool to target execution environment Write tool supported script Create new tool for the attack Customize execution environment

Attack step Reverse engineer software and protections Understand the software Recognize similarity with already analysed protected application Preliminary understanding of the software Identify input / data format

Build workaround

Recognize anomalous/unexpected behaviour

Recreate protection in the small

Identify API calls

Assess e↵ort

Understand persistent storage / file / socket

Build the attack strategy Evaluate and select alternative step / revise attack strategy Choose path of least resistance Reuse attack strategy that worked in the past Limit scope of attack Limit scope of attack by static meta info

Understand code logic Identify sensitive asset Identify code containing sensitive asset Identify assets by static meta info Identify assets by naming scheme Identify thread/process containing sensitive asset

36

26 Attack Behavior Models

37

Fig. 7: Model of hacker activities related to making / confirming hypotheses and building the attack strategy

Attack Behavior Models 28

Fig. 8: Model of hacker activities related to choosing, customizing, and creating new tools 38

important factors are known limitations of existing tools, which might be inapplicable to a specific platform or application ([P:A:23] “[omissis] Attack step: dynamic analysis with another tool on the identified parts to overcome the limitation of Valgrind”), as

Attack Behavior Models

29

Fig. 9: Model of hacker activities related to defeating protections by undoing, overcoming, working around, or bypassing them.

39

Questions?

The project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 609734.

40

des documents recommandant

Architecture Software Defined Protection - Check Point France

Les entreprises d'aujourd'hui ont besoin d'une architecture unique combinant des ... dans l'environnement informatique, et l'architecture doit fournir une posture.

A Domain-Specific Software Architecture for

plan of intended action, which intensionally describes an equivalence class of ... 11 improvises its specific course of behavior, following intended plans as well as possible, R (for regular destinations, rather than plan A for alarm destinatio

A Domain-Specific Software Architecture for Adaptive ... - CiteSeerX

The architecture of a complex software system is its â€œstyle and method of design and ... monitoring systems in four specific domains: intensive care [15, 20, 22], materials Building a variety of individual agents by configuring selected compo

a software architecture for collaborative virtual prototyping - IRIT

We will now describe the distribution of a virtual environment using VIPER. Showing how distributed virtual universes and distributed stimuli spaces can solve ...

a software architecture for collaborative virtual prototyping - IRIT

commands, deictics and fuzzy parameters : "Put the bottle on the table", "Move it to the left". After studies in ergonomics, we have decided to limit our gestural ...

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

A - 1.1.1.3.1.3.1.1.11 Manipulate Object Resources B - 1.2.2.2.3.1.1 Game Object Component Exported Classes............. 252 The book uses clear English to explain w connect to unique alter egos, and began the â

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

should demonstrate a reduced API into the component itself. The technology Specific%20Software%20Architectures%20(DSSA).pdf >. Duffy, R.

Diagnostic Tool - Global Protection Cluster

et policier en uniforme, les bons offices et les composantes des droits de Elle ne porte pas sur l'engagement auprÃ¨s des forces de sÃ©curitÃ© nationales ou d' ...

Diagnostic Tool - Global Protection Cluster

s'appuyant sur une série de consultations organisées avec les modules de la activités et des plans d'urgence … avec la participation pleine et entière de ...

FIGARO - AN AUTOMATIC TOOL FLOW FOR DESIGNS WITH

functions on a single chip, while higher levels of system in- tegration increase the ... standard design entry formats such as VHDL, Verilog, or schematic capture.

A Nifty Tool for a Perfect Radius

several 1/4-inch holes drilled in a line, cleaned up with a round file, will get the job ... a 6-inch piece of 1-by-2-by-0.120 could be sawed to form a 2-inch- wide by ...

Innovative tool for realistic cavity flow analysis : global stability

Reynolds number cylindrical cavity flow have given good results, see Mery et al. [3] ... is characterized by the complex number Ï‰ = (Ï‰r,Ï‰i) where Ï‰r gives the ...

Hydraulic architecture and water flow in growing grass tillers - Esalq

of the water potential drop within mature leaves occurred within a tenth of millimetre in the blade, between the xylem vessels and the site of water evaporation ...

LEIS, a tool for diagnostic and prevision of anthropogenic pressure

For that purpose within the ROSELT/OSS program [1], has been developed the LEIS (..... Saison. MStotal. MSherba. MSlignFeuiB. MSlignFeuiH. MSlignTige_4.

lean architecture for agile software development james o coplien pdf

for agile software development james o coplien PDF file for free from our online library ... With our online resources, you can find lean architecture for agile.

Software Architecture for Dynamic Adaptation of ... - Semantic Scholar

La collaboration des camÃ©ras avec un composant logiciel d'analyse vidÃ©o permet de dÃ©terminer la trajectoire probable de l'intrus et par consÃ©quent de dÃ©marrer les prochaines camÃ©ras susceptibles de se trouver sur cette trajectoire ou d'orienter

Seminar Rainwater Harvesting, a Tool for Development and ...

19 nov. 2010 - a Tool for Development and Adaptation to Climate Change. International Environment House II. CH-1219 Chatelaine, Geneva, Switzerland.

Hydraulic architecture and water flow in growing grass tillers - Esalq

to maintain rapid gas exchange in leaves and to transport nutrients and growth ... Under steady state conditions, the Ohm's law analogue of water flow in plants ...

a tool for rock properties analysis - CiteSeerX

of the earth models that can be obtained when accounting for the anelasticity of between 1 and 100 kHz and between 0.1 Hz and 160 kHz respectively (see ...

a tool for rock properties analysis - CiteSeerX

to other acquisition conÂ¢gurations such as surface seismic data requires further work. ... that one can correct for losses other than intrinsic attenuation.

short communications NORMA: a tool for flexible

Jun 12, 2006 - Acta Cryst. (2006). D62, 1098â€“1100. Acta Crystallographica Section D. Biological. Crystallography. ISSN 0907-4449. NORMA: a tool for flexible ...Missing:

A virtual tool for controlling reality. .fr

To access all of the physical parameters of a modeled system. â€¢ To protect your investments by ... Identification of areas that need refining. > Adaptive meshing.

Wrekavoc: a Tool for Emulating Heterogeneity - LaBRI

CPU, whatever the number of processes currently run- ning. More precisely, a CPU-burn sets the scheduler to a FIFO policy and gives itself the maximum pri-.

A Visualization Tool for OpenSim - CNRS

S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan,. A. Habib, C.T. John, E. Guendelman, and D.G.. Thelen. Opensim: Open-source software to cre- ate and analyze ...

×
Report A tool flow and architecture for composable software protection

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

